A comparative study on shape and elemental composition of microgranules and crystals present in the cytoplasm of amoebae

Yoichi Yashima

Summary

In order to compare the difference of crystals and microgranules among *Amoeba proteus*, *Polychaos dubium* and the food organism chlorella free *Paramecium bursaria* collected from a natural freshwater pond, a study was performed using a light microscope (LM), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray microanalyser. LM and SEM observation of the cytoplasm of *A. proteus* revealed numerous microgranules and small crystals of bipyramidal form, that of *P. dubium* revealed numerous microgranules and large crystals of platelike rectangular form, and that of *P. bursaria* revealed numerous microgranules and irregular shaped crystals. By using LM observation of a toluidine blue stained thick resin section, the outer layer of each crystal in *P. dubium* and the whole of each crystal in *A. proteus* was dyed dense ultramarine. The results of X-ray microanalysis showed as follows: The elemental composition of microgranules and crystals did not differ between the two species of *A. proteus* and *P. dubium*, and the elemental composition of both crystals consisted mainly of carbon, nitrogen and oxygen, and that of microgranules consisted of the same elements as crystals, plus the inorganic components magnesium, phosphorus, potassium, chlorine, and calcium. In *P. bursaria* no difference of the elemental composition between microgranules and crystals was observed. The inorganic component of the elemental composition of the microgranules and crystals was slightly different between amoebae and *P. bursaria*.

These results indicate that the crystals and microgranules of amoebae were not derived from the food organism *P. bursaria* but were originally synthesized in each cell, that the crystals of amoebae could be deposits or reservoirs of organic materials containing nitrogen, and that microgranules of amoebae could be deposits and reservoirs of certain ions and could be involved in the regulation of ion levels in the cell.

* 岩手医科大学 教養部 生物学
* Department of Biology, School of Liberal Arts and Sciences, Iwate Medical University
はじめに

原生動物にはいろいろな形の結晶が見られるが、多くの研究者によって結晶の形、成分と機能などについて調べられてきた。以前には結晶は細胞にとって不要な物質であり、排出物と考えられていた。アメーバの場合結晶をもつものが多く、食性によってこれが増減することが知られている（Andersen and Holter 1945）。これらの結晶はプリン誘導体のトリウレット（カルポニール・ジウレア）であると言われ、窒素代謝産物と考えられている（Griffins 1959, Grunbaum 1959）。アメーバの分類においては結晶の形や大きさが特徴、核、ウロイドなどともに同一の特徴に用いられている（石井1999）。

従来栄養生物では結晶の形や出現は取り込む栄養分関係があるといわれ、ゾリウムシでは細菌を餌として与えると、小さな粒子状の結晶ができ、タンパク質や肉エキスを与えると多くの大きな結晶ができるといわれている。有孔虫ではミジンコや絹毛虫類を餌として与えると結晶ができるが、珪藻を与えると結晶はできないこととも知られている。細毛虫類の結晶にいろいろな形のものがみられ、その成分はcalcic struviteであると言われ、有機物を含む結晶としてはlithosomeがあり、今日は結晶の役割はイオンや窒素代謝物の沈着物または貯蔵庫であるか、もしくはある種のイオンの濃度を調節しているとの二つの仮説があるが、結晶の化学的、生理学的本質は解明されていない（Hausmann Hulsman and Radek 2003）。

本研究では、アメーバの微小顆粒と結晶の性質を調べるために、各種顕微鏡による観察を行ったとともに走査型X線マイクロアナライザーによる元素分析を行い、さらに、餌生物の結晶（微小顆粒）の元素とアメーバの結晶（微小顆粒）の元素組成の比較を行って餌生物由来か、それともアメーバ細胞内で合成されたものかを検討した結果について報告する。

材料と方法

材料は盛岡市岩手公園の鶴ヶ池から採集したアメーバ、Amoeba proteusとPolyochoa dubiumの二種を使用した。これらのアメーバ二種からそれぞれ細胞1個体を単離し、餌としてミドリゾリウム（Paramecium bursaria）白色細胞（以下この細胞をWCとする）を用いて室温で培養し、クローニを作製した。培養はアメーバの生理的塩類溶液であるKCM（石井1999）を、容器として6cmプラスチックシャーレを用いて行った。WCの培養は、Wheat grass powder浸出液（2.5g/l）にNaHPO4・12H2Oを1g/lの割合で加え、これにKlebsiella pneumoniaeを接種後24時間経過したものを培養液として用いて行った。

スライドガラス上でKCMをミクロビペットで一滴おき、アメーバ細胞や餌のWCを10個移し、カバガラスで封じて光学顕微鏡の生体標本を作製した。また、核の観察は酸酸カリウムで染色を行った。

透過型電子顕微鏡（TEM）用の試料は、2.5％グルタルアルデヒド（0.05Mリン酸緩衝液、pH 7.4）で室温、1.5時間の前固定と1％四酸化オスミウム（0.05Mリン酸緩衝液、pH7.4）で0℃、1時間の後固定を行い、常法に従ってアルコールで脱水し、プロピレンオキサイドを通じてspurr樹脂に包埋して作製した。樹脂の重合が完了した後、厚さ0.5μmの厚切り切片と超薄切片を作製した。厚切り切片はトルイジンブルーで染色して光学顕微鏡で観察した。超薄切片は1％酢酸ウラニルと0.2％クエン酸鉄で染色し、TEM（日立H-7100）で観察した。

走査型電子顕微鏡（SEM）とエネルギーバランシ型X線マイクロアナライザー用の試料は、SEM用カーボン試料台にミクロビペットで数滴の超純水をおき、その中に遠心機用いて超純水で2回洗浄した50個体のアメーバ細胞2種それぞれを移して自然乾燥を行った後、カーボンを蒸着して作製した。WCの微小顆粒の分析用試料は、アメーバの場合と同様にカーボン試料台上で自然乾燥により作製した。また、約100mlの
培養を速心により集めたWCを超純水で2回洗浄した後2mlに濃縮し、これをブラストックサンプルチューブに移して-30℃のフリーザーで凍結した。これを室温に戻して解凍し、さらに、パスツールピペットでピピッティングを行って細胞を完全に破砕した。結晶を含む破砕液をアルミ試料台とカーボン試料台にマイクロピペットで数滴落し自然乾燥させて試料を作製した。WC結晶の炭素元素の分析は、アルミ試料台を用いて蒸着で行った。試料はSEM（日立S-4700）で観察し、エネルギー分散型（EDX）と波長分散型（WDX）X線マイクロアナライザー（日本電子JXA-8900L）を用い、結晶、微小顆粒とそれら以外の細胞成分（対照）について元素分析を行った。軽元素（C, N, O）はWDXで、その他の元素はEDXで分析を行った。

結 果
アメーバを光学顕微鏡で生体観察すると、A. proteusでは2〜3μmの透明な粒状の結晶（図1-②, ③）が、P. dubiumでは10〜20μmの透明な板状をした多数の結晶（図1-⑤, ⑥）がいずれも細胞質全体に観察され、結晶の形や大きさに種による違いが認められた。飼のWCでは、細胞質に種々のサイズの複雑な形をした透明な結晶（図1-①）が観察された。トルイジンブルー染色した切片を観察すると、A. proteusでは結晶全体が赤紫色で染色され（図2-①矢印）、P. dubiumでは結晶の周辺が赤紫色に染色されたが中央部は染色されなかった（図2-②矢印）。酢酸カーミンで染色したP. dubiumを観察すると、円盤状をした直径が40μmの核が1個とその周辺に透明な結晶が見られた。結晶の周囲はかすかに染色されていた（図1-④）。

A. proteusの結晶をTEMで観察すると、一枚の膜（矢印）でその周囲が開まれ、結晶胞が形成されていた。結晶の部分は電子密度の高い物質が少し認められ、中央が空洞になっていた（図2-①）。

飼生物のWCの試料をSEMで観察すると、結晶と微小顆粒が見られた。結晶は表面がひだ状になっているタイプとガラス片のようなタイプが見られた（図3-②, ③）、サイズはそれぞれ12.5μmと14.6μmであった。微小顆粒のサイズは1.7μm以下であった（図3-①）。結晶と微小顆粒を構成する元素はともに同じであり、C, N, O, Na, Si, P, S, Cl, K, Caの10元素が検出された（図5-①, ②, 表1）。

A. proteusの試料をSEMで観察すると、サイズが2〜3μmのバイピラミッド型の均一な結晶とその周囲に0.6μm以下の微小顆粒が存在した（図4-③）。これらを分析すると結晶からはC, N, O, P, S, Kが、微小顆粒からはC, N, O, Mg, P, Cl, K, Caの元素が検出された（図6-⑤, 表1）。

P. dubiumでも2.7〜20μmの大きさの異なる矩形板状の結晶はその結晶に付着する0.9μm以下の微小顆粒が見られ、大きな結晶には多数の微小顆粒が結合していた。これらを分析すると結晶からはC, N, O, P, Kが、微小顆粒からはC, N, O, Mg, P, Cl, K, Caの元素が検出された（図5-④, ⑤, ⑦, 表1）。対照からはP, S, Cl, Kの元素が検出された（図6-⑧, 表1）。

- 3 -
図1 光学顕微鏡写真
① ミドリウリムシ WC、矢印は結晶を示す。スケールは20 µm。
② A. proteus の低倍写真。細胞質全体に点状に見える多数の結晶。スケール20 µm。
③ ②の一部を拡大、多数の結晶が粒状に見える。スケール20 µm。
④ P. dubium の酢酸カーミン染色写真。1個の赤く染色された核（N）と周囲に見える大きな結晶。スケール20 µm。
⑤ P. dubium の低倍写真。多数の結晶が細胞全体に見られる。スケール20 µm。
⑥ ⑤の一部を拡大。同じ大きさの結晶からなる。スケール20 µm。
図2 アメーバ結晶の光顕写真とTEM写真

(1) *A. proteus*のトルイジンブルー染色標本。1個の核（N）と多数の結晶（矢印）が見られる。スケールは20μm。

(2) *P. dubium*のトルイジンブルー染色標本。大きな結晶（矢印）の周囲が濃染されている。スケールは20μm。

(3) *A. proteus*の結晶胞（CV）のTEM写真。結晶胞のなかに電子密度の高い表面をもつ中空の結晶が見られる。スケールは1μm。
図3 ミドリゾウリムシ微小顆粒と結晶のSEM写真。
① ミドリゾウリムシの微小顆粒、スケールは5 μm。
② ミドリゾウリムシのひだ状をした不規則な形の結晶、スケールは5 μm。
③ ミドリゾウリムシのガラス片様の結晶、スケールは5 μm。
図4 アメーバの結晶と微小顆粒のSEM写真

① P. dubium の低倍写真。種々のサイズの矩形層板状結晶が見られる。スケールは10 μm。

② ①の結晶の拡大。結晶に微小顆粒が多数付着している。スケールは5 μm。

③ A. proteus の微小顆粒とバピラミッド型の結晶。スケールは5 μm。
Crystal of *Paramecium bursaria*

Crystal of *Amoeba proteus*

Microgranule of *Amoeba proteus*

Crystal of *Polychaetus dubium*

Microgranule of *Polychaetus dubium*
図6 EDX-X線スペクトラ
① ミドリソウリムシの結晶
② ミドリソウリムシの微小顆粒
③ A. proteus の結晶
④ A. proteus の微小顆粒
⑤ A. proteus の対照
⑥ P. dubium の結晶
⑦ P. dubium の微小顆粒
⑧ P. dubium の対照
表1 WDX-、EDX-X線マイクロアナライザーによる結晶と微小顆粒の元素組成

<table>
<thead>
<tr>
<th>試料</th>
<th>WDX</th>
<th>EDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramecium burusaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結晶*</td>
<td>C, N, O</td>
<td>Na, Si, P, S, Cl, K, Ca</td>
</tr>
<tr>
<td>微小顆粒</td>
<td>C, N, O</td>
<td>Na, Si, P, S, Cl, K, Ca</td>
</tr>
<tr>
<td>Amoeba proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結晶</td>
<td>C, N, O</td>
<td>P, S, K</td>
</tr>
<tr>
<td>微小顆粒</td>
<td>C, N, O</td>
<td>Mg, P, Cl, K, Ca</td>
</tr>
<tr>
<td>対照**</td>
<td></td>
<td>P, S, Cl, K</td>
</tr>
<tr>
<td>Polychaos dubium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結晶</td>
<td>C, N, O</td>
<td>P, K</td>
</tr>
<tr>
<td>微小顆粒</td>
<td>C, N, O</td>
<td>Mg, P, Cl, K, Ca</td>
</tr>
<tr>
<td>対照**</td>
<td></td>
<td>P, S, Cl, K</td>
</tr>
</tbody>
</table>

* 冷結融解とビペットにより作製した細胞破砕液の結晶。
** 試料台上で細胞を自然乾燥させた試料で、結晶や微小顆粒のない細胞成分の部分。
印のついていないものは試料台上で細胞を自然乾燥させた試料の結晶と微小顆粒。

考察

光学顕微鏡による形態学的な観察を行った結果、アメーバやP. burusariaの細胞核には形や大きさの異なる結晶と微小颗粒が二種類存在することがわかった。従来から知られていた結晶は、空胞のなかに入っている結晶状を形成しているが、微小颗粒については膜に包まれているかどうかは不明である。アメーバとP. burusariaの結晶の分布に違いが見られ、アメーバでは細胞質全体に均等に分布しているが、P. burusariaでは大きな結晶は細胞の前段部や後段部に分布する傾向が見られ、小さな結晶は細胞質に均等に分布している。このような結晶の分布の違いは、アメーバでは結晶が原形質流動に沿って細胞内を移動することができるのに対し、P. burusariaでは小さな結晶は原形質流動による移動が可能でないために細胞内に均等に分布するが、大きな結晶は原形質流動を移動できないために分布にかたよりが生じることが原因と考えられる。アメーバとP. burusariaの微小顆粒については細胞内の分布については観察できなかった。

P. burusariaの結晶は不定形をした表面がひだ状や滑らかなガラス片状の構造をしているのに対し、Grunbaumら（1959）によるとA. proteusではバイミラミッド型、矩形板状型と菱形板状型の3型が観察されているが、アメーバの結晶は定型のバイピラミッド型や矩形板状で、種によって一定の形をしていた。結晶のサイズはP. burusariaでは15μm程度、アメーバのA. proteusでは2～3μmとほぼ一定、P. dubiumでは2.7～20μmと違いが見られた。微小颗粒のサイズはP. burusariaが1.7μm以下、A. proteusの場合0.6μm以下、P. dubiumの場合は0.9μm以下と違いが見られた。そして、P. burusariaとA. proteusの微小颗粒は結晶に付着していない細胞質に存在するのに対し、P. dubiumでは結晶に付着している。結晶の形成過程を推定すると、P. dubiumでは結晶のサイズに大小があるので、結晶は結晶内で成長して大きくなるとともに微小颗粒が付着すると考えられる。しかし、観察された結晶のうち最も小さな結晶には微小颗粒が付着していないので、結晶の成長に微小颗粒が関わっているのか、それともいないのかわからない。いずれにしても、P. dubiumでは微小颗粒と結晶が同一の結晶内に形成されるものと考えられる。これに対して、A. proteusやP. burusariaでは結晶に微小颗粒が付着していないので、微小颗粒形成と結晶形成が起こる所は異なり、独立に形成されるものと考えられる。また、飼生物として同じものを与えるも結晶の形がアメーバの種によって異なり、同種では一定の形の結晶を形成することから、種に
よって結晶の形は一定になるので分類の基準として使われている（Bovee and Jahn 1973，石井1999）が，これらと結果は一致する。これらのことから，アメーバは餌生物のからの結晶を老廃物として単に貯蔵しているのではなく，細胞内に多数の微小顆粒や結晶があることから何らかの生理的性質をもっていると考えられる。アメーバの結晶は自身が取り込んだ餌生物の結晶を元にして形成したものか，結晶形成と餌生物の結晶との関係は不明である。

これに対し，ゾリムシ類や有孔虫類では餌生物の種類によって形成される結晶の形や大きさに違いが生じたり，結晶の生否が生じたりすること（Hausmann，Huismans and Radek 2003）や，ゾリムシの飢餓状態におとく結晶は1～2日後に完全に消失し，餌生物を与えると再出現することが知られている（Daniels 1973）が，この現象では結晶が栄養源として働いているように推測される。しかし，アメーバにおいてはこのような結晶の消失と再出現は短時間内では観察されないが，長時間の飢餓状態を続けるとこのような現象が起こるのでかもしれない。

アメーバの微小顆粒にC, N, Oの元素の他に無機成分としてMg, P, Cl, K, Caの元素が検出された。これらの特性X線のカウント数と対照のそれらを比較すると，明らかに違いがみられたので，微小顆粒に対照の成分が付着したのでなく，検出された元素は微小顆粒を構成する元素であったと考えられる。微小顆粒の元素組成はA. proteusとP. dubiumの2種でまったく同じであった。P. bursariaの微小顆粒の構成元素は結晶の元素組成とまったく同じであったので，P. bursariaでは微小顆粒が結晶の形成に関係があると推定されるが，アメーバでは微小顆粒と結晶に無機成分の違いが見られないので，結晶の形成に微小顆粒は直接関係がないように考えられる。

アメーバの微小顆粒の元素組成がParamecium tetraureliaの結晶であるcalcian struvite（Hausmann et al. 2003）の元素組成と同じであったので，微小顆粒はイオンの貯蔵やイオン量の調節などに関わる，元素組成からNを含む有機物と考えられる結晶は，栄養物質の貯蔵に関わっていると推定される。

謝辞

本稿を終えるにあたり，ご助言とご校閲をいただきました本教室の松政正俊教授，三枝聖講師に感謝いたします。また，結晶のSEM像撮影とX線マイクロ分析を行っていた本学バイオイメージングセンターの吉田康夫主任技術員，画像処理とレポートの作製をしていただいた大坪啓則専門技術員，英文を校閲していただいた本学英語科ジェームズホッブス講師の各氏に厚くお礼申し上げます。
参考文献
石井圭一 (1999) アメーバ図鑑 金原出版

要約
アメーバのA. proteusとP. dubiumの二種と餌生物のP. bursaliiaの細胞内に見られる微小顆粒と結晶を光顕、TEMとSEMを用いて形態観察を行うとともに、走査型X線マイクロアナライザーを用いて元素分析を行い、それらの形態と元素組成の比較を行った。
光顕とSEMによる観察で、A. proteusでは多数の小さな微小顆粒とバイピラミッド型の結晶が、P. dubiumでは多数の微小顆粒と大きさの異なる矩形層板状型の結晶が、ましてP. bursaliiaでは微小顆粒と大きさの異なる不規則な形の結晶が観察された。アメーバの結晶をトルエンブレー染色した厚切り樹脂切片を観察すると、A. proteusでは結晶の全体が、P. dubiumでは結晶の表層部が淡黄色に染色された。走査型X線マイクロアナライザーで微小顆粒と結晶の元素分析を行った結果、微小顆粒と結晶の元素組成はA. proteusとP. dubiumの間に関違いが認められず、結晶の元素組成はC, N, Oであり、微小顆粒ではC, N, O, Mg, P, Caであった。P. bursaliiaでは微小顆粒と結晶の元素組成に関違いが認められなかった。アメーバとP. bursaliiaの間では無機成分にわずかな違いが認められた。
これらの結果から、アメーバの微小顆粒と結晶は餌生物のP. bursaliiaの微小顆粒や結晶に由来するのではなく、各アメーバ自身が合成したものと考えられる。また、アメーバの結晶は元素組成からNを含む有機物の貯蔵に、微小顆粒は無機物の貯蔵や細胞内のイオン濃度の維持に関与していると考えられる。