岩手医科大
審査学位論文
(博士)
Hypoxic viable tissue in human chronic cerebral ischemia due to unilateral major cerebral artery steno-occlusive disease

Hiroaki Saura, MD; Kuniaki Ogasawara, MD; Takaaki Beppu, MD; Koji Yoshida, MD; Masakazu Kobayashi, MD; Kenji Yoshida, MD; Kazunori Terasaki, PhD; Yoshihiro Takai, MD; Akira Ogawa, MD

Department of Neurosurgery (H.S., K.O., T.B., K.Y., M.K., K.Y., A.O.) and Cyclotron Research Center (K.T.), School of Medicine, Iwate Medical University, Morioka, Japan; and Department of Radiology and Radiation Oncology (Y.T.), Hirosaki University Graduate School of Medicine, Hirosaki, Japan

All correspondence to:

Hiroaki Saura, M.D.
Department of Neurosurgery, School of Medicine, Iwate Medical University,
19-1 Uchimaru, Morioka, Iwate 020-8505, Japan
Telephone: +81-19-651-5111 (ext. 6605)
Fax: +81-19-625-8799
Email: hirosau33@gmail.com
Hypoxic viable tissue in human chronic cerebral ischemia due to unilateral major cerebral artery steno-occlusive disease

Cover title: Hypoxic viable tissue and ischemia

Word count (title page, abstract, main body of text, disclosures, reference, figure legends and tables): 5825 words

Number of figures: 4 (3 graphs)

Number of tables: 2

Key Words: Hypoxic cell, misery perfusion, cerebral metabolism, positron emission tomography

Code: [47] Brain Circulation and Metabolism
Abstract

Background and Purpose: Positron emission tomography (PET) with radiolabeled 2-nitroimidazoles directly detects hypoxic but viable tissue present in an acute ischemic area in the human brain. The present study using PET with 1-(2-\(^{18}\)F-fluoro-1-[hydroxymethyl]ethoxy) methyl-2-nitroimidazole (\(^{18}\)F-FRP170) aimed to determine whether tissue with an abnormally elevated uptake of \(^{18}\)F-FRP170 exists in human chronic cerebral ischemia due to unilateral atherosclerotic major cerebral artery steno-occlusive disease.

Methods: \(^{18}\)F-FRP170 PET was performed, and cerebral blood flow (CBF) and metabolism were assessed using \(^{15}\)O-gas PET in 20 healthy subjects and 52 patients. A region of interest (ROI) was automatically placed in three segments of the middle cerebral artery territory in both cerebral hemispheres with a three-dimensional stereotaxic ROI template using SPM2, and each PET value was determined in each ROI. The ratio of values in the affected versus contralateral hemispheres was calculated for the \(^{18}\)F-FRP170 PET image.

Results: A significant correlation was observed between oxygen extraction fraction (OEF) and \(^{18}\)F-FRP170 ratios ($\rho=0.509$; $P<0.0001$) in a total of 156 ROIs in 52 patients. The specificity and positive-predictive value for a combination of an elevated OEF and a moderately reduced cerebral oxygen metabolism for detection of an abnormally elevated \(^{18}\)F-FRP170 ratio (19 ROIs: 12%) were significantly greater than those for the individual categories (elevated OEF, moderately reduced cerebral oxygen metabolism, or reduced CBF).

Conclusions: Tissues with abnormally elevated uptake of \(^{18}\)F-FRP170 exist in human chronic cerebral ischemia characterized by a combination of misery perfusion and
moderately reduced oxygen metabolism due to unilateral atherosclerotic major cerebral artery steno-occlusive disease.
Cerebrovascular autoregulatory mechanisms act via dilation of precapillary resistance vessels to maintain cerebral blood flow (CBF) in the context of reductions in cerebral perfusion pressure. However, autoregulatory capacity is not sufficient to compensate for severe reductions in cerebral perfusion pressure, thereby leading to a decline in CBF. In this context, referred to as "misery perfusion", cerebral oxygen metabolism is dependent on a progressive increase in oxygen extraction fraction (OEF). When CBF is further reduced beyond compensation of the increase in OEF, cerebral oxygen metabolism begins to decline, leading to the irreversible brain damage that characterizes cerebral infarction.

In acute ischemic stroke, the ischemic penumbra is defined as peri-infarct tissue that is functionally impaired but structurally intact and remains potentially salvageable. Positron emission tomography (PET) using \(^{15}\text{O}\) identifies areas of "misery perfusion" in a patient with acute ischemic stroke. \(^{18}\text{F}\)-fluoromisonidazole (FMISO) is a PET marker of hypoxic but viable tissue that exists in an acute ischemic area in the human brain, and areas with uptake of the tracer reportedly are metabolically compromised tissue at risk of infarction following acute ischemic stroke. The mechanism of selective retention of 2-nitroimidazoles, including FMISO, in hypoxic tissue is not clearly understood but may involve nitroreductases. Nitroimidazole molecules enter cells by passive diffusion and undergo nitroreduction to products that are covalently bound to intracellular macromolecules. These products are reoxidized and diffuse out of the cells under normoxic conditions, while remaining trapped by macromolecules within cells under hypoxic conditions. Therefore, PET with radiolabeled 2-nitroimidazoles may allow detection of hypoxic tissue, although the products of the tracer also remain trapped when cells are no longer hypoxic after
recovery of perfusion.

In chronic cerebral ischemia due to severe stenosis of the cervical internal carotid artery (ICA), preoperatively impaired cognitive function occasionally improves after carotid endarterectomy; the reversible cognitive impairment is related to a state of reduction in metabolism due to moderate, but potentially reversible, downregulation of cortical neurotransmitter receptors in response to more severe reduction in brain perfusion due to ICA stenosis and the cognitive improvement is associated with postoperative normalization of the cerebral metabolism followed by postoperative recovery of cerebral perfusion. These findings suggest that functionally impaired but structurally intact tissue may exist in areas of chronic cerebral ischemia with a combination of misery perfusion and reduced cerebral metabolism and that such tissue may be viable under hypoxic conditions. To our knowledge, there is only one previous study that has imaged hypoxic tissue in the context of human chronic cerebral ischemia.

While a high OEF is an indirect marker of hypoxic tissue, a new radiolabeled 2-nitroimidazole, 1-(2-18F-fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole (18F-FRP170), has been recently developed to directly image hypoxic tissue using clinical PET. PET using 18F-FRP170 clearly detects viable tissues under hypoxic conditions as an accumulation of the tracer in malignant brain tumors.

Therefore, the purpose of the present study, using 15O-gas and 18F-FRP 170 PET, was to demonstrate the presence of tissue with abnormally elevated uptake of 18F-FRP170 in the context of human chronic cerebral ischemia due to unilateral atherosclerotic major cerebral artery steno-occlusive disease.
Subjects and Methods

Healthy subjects

This study evaluated 20 healthy male subjects aged 30 to 67 years (mean, 55 years) who underwent screening based on past history, physical examination, and neurological and cognitive testing. The subjects had no past history of hypertension, diabetes mellitus, atrial fibrillation, or pulmonary disease, and magnetic resonance (MR) imaging did not reveal any organic lesions, leukoaraiosis or asymptomatic lacunar infarction.

Patients

This study also included 52 patients (18 women and 34 men) aged 42 to 82 years (mean, 62 years) with unilateral middle cerebral artery (MCA) or ICA steno-occlusive diseases. All patients had experienced prior cerebral ischemic events. Conventional MR imaging was performed in all patients, and no infarct in the basal ganglia, internal capsula or cerebral cortex was observed in any of the patients; 40 patients exhibited the rosary-like infarcts located at the corona radiate and/or the subcortical white matter in the centrum semiovale and/or the anterior and/or posterior watershed zone, which were defined as subcortical border zone infarction; and the remaining 12 did not have any infarction. Twenty-seven patients had transient ischemic attacks with (15 patients) or without (12 patients) definite subcortical border zone infarction on MR imaging. The remaining 25 patients had minor complete strokes with definite subcortical border zone infarction on MR imaging. Cerebral angiography with arterial catheterization or MR angiography demonstrated ICA stenosis (greater than 70%) in 8 patients, ICA occlusion
in 27 patients, MCA stenosis (greater than 50%) in 10 patients, and MCA occlusion in 7 patients. No patient had occlusion or stenosis of greater than 50% in the contralateral ICA or MCA.

The study protocol was approved by the local ethics committee, and all subjects gave written informed consent before the study.

Positron Emission Tomography

PET studies were performed using a SET-3000GCT/M scanner (PET/CT; Shimadzu Corp.).30 This modality uses gadolinium silica oxide detectors and provides 59 slices with 2.6 mm slice thickness. The axial field of view was 156 mm, and the spatial resolution was 3.5 mm FWHM at 1 cm in-plane and 4.2 mm FWHM at center axially. The scanner was operated in static scan mode with dual-energy window acquisition for scatter correction. The coincidence time window was set to 10 ns. A shield module consisting of 7 mm thick lead plates attached to the gantry bed and covering the breast and shoulder of the subject was used to reduce the counting rate of random coincidence and scatter coincidence attributable to radioactivity outside the field of view.

Before the emission scans, a transmission scan (3 min) with a 137Cs point source was performed with a bismuth germanate transmission detector ring coaxially attached to the gadolinium silica oxide emission detector ring. CBF was determined while the subject continuously inhaled C15O2 through a mask. Measurements of CMRO2 and OEF were obtained during continuous inhalation of 15O2. Data were collected for 5 min. A single breath of C15O was used to measure cerebral blood volume. CBF, CMRO2 and OEF were calculated using the steady state method,31 and CMRO2 and OEF were
corrected by cerebral blood volume.32

The 18F-FRP170 was synthesized using on-column alkaline hydrolysis according to previously described methods.27 The final formulation for injection was prepared in normal saline containing 2.5\% v/v ethanol using solid-phase extraction techniques. At 60 min after intravenous injection of approximately 370 MBq of 18F-FRP170, data were collected for 10 min.29

Patients underwent PET studies more than two months after the last ischemic event, and the interval between 15O-gas PET and 18F-FRP170 PET ranged from one to four days.

\textit{Data Analysis}

All PET images were transformed into the standard brain size and shape by linear and nonlinear transformation using SPM2 for anatomic standardization.33 Thus, brain images from all subjects had the same anatomic format. Three hundred and eighteen constant regions of interest (ROIs) were automatically positioned in both cerebral hemispheres using a three-dimensional stereotaxic ROI template (3DSRT) with SPM2 (FUJIFILM RI Pharma Co., Ltd., Tokyo, Japan).34 The ROIs were grouped into ten segments (callosomarginal, pericallosal, precentral, central, parietal, angular, temporal, posterior, hippocampus, and cerebellar) in each hemisphere according to the arterial supply. Of these ten segments, the precentral and central segments were combined and defined as an ROI of the frontal cortex perfused by the MCA (ROI\textsubscript{f-MCA}); the parietal and angular segments were combined and defined as an ROI of the parietal cortex perfused by the MCA (ROI\textsubscript{p-MCA}); the temporal segment was defined as an ROI of the temporal cortex perfused by the MCA (ROI\textsubscript{t-MCA}) (Figure I in the online-only Data
Supplement). CBF, CMRO₂ and OEF on ¹⁵O-gas PET images were measured in the ROIs of MCA, ROIₚ-MCA and ROIsₜ-MCA in the cerebral hemisphere ipsilateral to the lesion. Radioactive counts on ¹⁸F-FRP170 PET images were measured in the bilateral ROIs of MCA, ROIₚ-MCA and ROIsₜ-MCA; the ratio of the value in the affected cerebral hemisphere to that in the contralateral cerebral hemisphere was then calculated for each ROI in ¹⁸F-FRP170 PET images.

Healthy subjects were assigned to one of two groups, each consisting of 10 subjects who underwent ¹⁵O-gas PET or ¹⁸F-FRP170 PET assessments. In the former group, CBF, CMRO₂, and OEF were measured in the bilateral hemispheric ROIs. In the latter group, the ¹⁸F-FRP170 ratio was calculated when the left cerebral hemisphere was defined as the affected side; mean and standard deviation (SD) of the ¹⁸F-FRP170 ratio was then calculated in each ROI (ROIsₜ-MCA, ROIsₚ-MCA or ROIsₜ-MCA). Of these three MCA ROIs, the highest value of the mean+2 SDs of ¹⁸F-FRP170 ratio was determined. Any patient with an MCA ROI with ¹⁸F-FRP170 ratio greater than the highest value was defined as having an abnormally elevated ¹⁸F-FRP170 ratio.

In addition, mean data in the whole MCA territory (ROIs whole-MCA = mean value of [ROIsₜ-MCA + ROIsₚ-MCA + ROIsₜ-MCA]) in healthy subjects and patients were calculated and analyzed in the same manner as that for each MCA ROI (ROIsₜ-MCA, ROIsₚ-MCA or ROIsₜ-MCA).

Statistical Analysis

Data are expressed as the mean ± SD. Differences in various parameters between the controls and patients were evaluated using the Mann-Whitney U test. Correlations between various parameters were determined using the Spearman’s rank correlation
coefficient. Statistical significance was set at the $P<0.05$ level. To verify an assumption that the 18F-FRP170 ratio is abnormally elevated when the CBF or CMRO$_2$ is reduced or the OEF is elevated and to investigate which of these three parameters or which combination is more strongly associated with an abnormally elevated 18F-FRP170 ratio, the accuracy of using CBF, CMRO$_2$ or OEF to detect an abnormally elevated 18F-FRP170 ratio was determined using a receiver operating characteristic (ROC) curve. When a CBF or CMRO$_2$ in an MCA ROI in a patient was less than the cut-off point lying closest to the left upper corner of the ROC curve for detection of an abnormally elevated 18F-FRP170 ratio, the ROI was categorized as having a reduced CBF or CMRO$_2$, respectively; when a OEF in an MCA ROI in a patient was greater than the cut-off point lying closest to the left upper corner of the ROC curve for detection of an abnormally elevated 18F-FRP170 ratio, the ROI was categorized as having an elevated OEF. Exact 95% confidence intervals (CIs) of sensitivity, specificity, positive- and negative-predictive values were computed using the binomial distributions. The differences in sensitivity, specificity, positive- or negative-predictive values between the categories of reduced or elevated PET value were analyzed using the 95% CIs.

Results

Mean, SD and range of 18F-FRP170 ratio, CBF, CMRO$_2$, and OEF in ROIs$_{f-MCA}$, ROIs$_{p-MCA}$ and ROIs$_{t-MCA}$ in 10 healthy subjects and 52 patients are shown in Table 1. 18F-FRP170 ratios did not differ between healthy subjects and patients in all three MCA ROIs. CBF and CMRO$_2$ were significantly lower in patients than in healthy subjects in all three MCA ROIs, while OEF was significantly greater in patients than in healthy subjects.
subjects in ROIsf-MCA and ROIs-p-MCA; in ROIs-t-MCA, OEF did not differ between healthy subjects and patients. The mean ± 2 SDs of \(^{18}\text{F}-\text{FRP170}\) ratio obtained in healthy subjects was 1.094 for ROIsf-MCA and ROIs-p-MCA; 1.092 for ROIs-t-MCA. Thus, when \(^{18}\text{F}-\text{FRP170}\) ratio in each MCA ROI in each patient was >1.094, the ROI was defined as having an abnormally elevated \(^{18}\text{F}-\text{FRP170}\) ratio. As a result, of the 156 ROIs in 52 patients, 19 (12%) were classified as having abnormally elevated \(^{18}\text{F}-\text{FRP170}\) ratio.

Figure 1 compares the \(^{18}\text{F}-\text{FRP170}\) ratio and CBF in each ROI from the patients, with no significant correlation identified between the two parameters. The sensitivity, specificity, positive- and negative-predictive values for CBF at the cut-off point lying closest to the left upper corner of the ROC curve for detection of an abnormally elevated \(^{18}\text{F}-\text{FRP170}\) ratio are shown in **Figure II in the online-only Data Supplement** and Table 2. The cut-off point was 35.9 ml/100 g/min (Figure 1) and an ROI with CBF less than this value was categorized as having a reduced CBF. The value represents mean – 1.5 SD (for ROIsf-MCA and ROIs-p-MCA) or mean – 1.8 SD (for ROIs-t-MCA) of the control value obtained from healthy subjects. The lowest CBF of ROIs with an abnormally elevated \(^{18}\text{F}-\text{FRP170}\) ratio was 23.7 ml/100 g/min.

Figure 2 compares \(^{18}\text{F}-\text{FRP170}\) ratio and CMRO\(_2\) in each ROI from the patients. Again, no significant correlation was identified between the two parameters. The sensitivity, specificity, positive- and negative-predictive values for CMRO\(_2\) at the cut-off point lying closest to the left upper corner of the ROC curve for detecting an abnormally elevated \(^{18}\text{F}-\text{FRP170}\) ratio are shown in **Figure II in the online-only Data Supplement** and Table 2. The cut-off point was 3.31 ml/100 g/min (Figure 2) and an ROI with CMRO\(_2\) less than this value was categorized as having a reduced CMRO\(_2\). The value represents mean – 0.4 SD (for ROIsf-MCA) or mean – 0.6 SD (for ROIs-p-MCA
and ROIs\textsubscript{t-MCA} of control. Further, when the cut-off point was moved in decrements from 3.31 ml/100 g/min of CMRO\textsubscript{2}, the sensitivity and positive-predictive values became 0% at a cut-off point of 2.51 ml/100 g/min (Figure 2), which represents mean − 2.4 SD (for ROIs\textsubscript{f-MCA} and ROIs\textsubscript{t-MCA}) or mean − 2.0 SD (for ROIs\textsubscript{p-MCA}) of control. When CMRO\textsubscript{2} less than 2.51 ml/100 g/min or between 3.31 ml/100 g/min and 2.51 ml/100 g/min was categorized as severely or moderately reduced, respectively, the specificity for a moderately reduced CMRO\textsubscript{2} for detection of an abnormally elevated 18F-FRP170 ratio was significantly greater than that for a reduced CMRO\textsubscript{2} (Table 2).

Figure 3 compares the 18F-FRP170 ratio and OEF in each ROI from the patients. The correlation between the two was significant ($P<0.0001$), with a correlation coefficient of 0.509. The sensitivity, specificity, positive- and negative-predictive values for OEF in the cut-off point lying closest to the left upper corner of the ROC curve for detecting an abnormally elevated 18F-FRP170 ratio are shown in Figure II in the online-only Data Supplement and Table 2. The cut-off point was 46.3% (Figure 3) and an ROI with OEF greater than this value was categorized as having an elevated OEF. The value represents mean + 1.6 SD (for ROIs\textsubscript{f-MCA}) or mean + 1.3 SD (for ROIs\textsubscript{p-MCA} and ROIs\textsubscript{t-MCA}) of control. Further, the specificity and positive-predictive value for a combination of an elevated OEF and a moderately reduced CMRO\textsubscript{2} for detection of an abnormally elevated 18F-FRP170 ratio were significantly greater than those for the individual categories (elevated OEF, moderately reduced CMRO\textsubscript{2}, or reduced CBF); significant differences in the sensitivity and negative-predictive value were not observed among the combined category and the individual categories (Figure 3, Table 2).

Mean data in the ROIs\textsubscript{whole-MCA} in healthy subjects and patients and analysis
in the same manner as that for each MCA ROI are presented in Tables I and II, Figures III, IV and V in the online-only Data Supplement.

Representative PET images in one patient with an abnormally elevated ^{18}F-FRP170 ratio are shown in Figures 4.

Discussion

The present study used ^{15}O-gas and ^{18}F-FRP 170 PET to demonstrate that tissues with abnormally elevated uptake of ^{18}F-FRP170, a direct marker of hypoxic but viable tissue, are present in human chronic cerebral ischemia with a combination of misery perfusion and moderately reduced oxygen metabolism due to unilateral atherosclerotic major cerebral artery steno-occlusive disease.

The rosary-like infarcts located at the subcortical white matter in the centrum semiovale or the anterior or posterior watershed zone are associated with hemodynamic impairment in ICA occlusive diseases. The same pattern infarcts located at the corona radiate appears to be related to hemodynamic impairment in MCA occlusive diseases. These infarcts were defined as subcortical border zone infarction and the present study tried to enroll patients with such infarcts to investigate relationship between misery perfusion and ^{18}F-FRP 170 PET findings.

PET with ^{18}F-FMISO has been commonly used to detect hypoxic tissue. However, ^{18}F-FMISO has various limitations, such as slow accumulation in hypoxic tissues, low target-to-background contrast, and significant amounts of radioactive metabolic products. The ^{18}F-FMISO agent is relatively lipophilic, whereas high hydrophilicity is associated with rapid blood clearance and high target-to-background
In contrast, the 18F-FRP 170 used in the present study has high image contrast, fast clearance, and readily crosses the blood-brain barrier; therefore, it is more suitable for visualizing hypoxic brain tissue than 18F-FMISO. Interestingly, a study using intratumoral oxygen pressure measurements with microelectrodes during resection of malignant glioma has directly demonstrated that an accumulation on 18F-FRP 170 PET represents viable tissue under the hypoxic condition.

While hypoxic tissue exhibiting increased uptake of 18F-FMISO may be doomed to die in acute stroke, a recent study using diffusion/perfusion MR or CT perfusion imaging and 18F-FMISO in acute ischemic stroke demonstrated that 18F-FMISO trapping overlapped the ischemic core presented as high intensity on diffusion MR as well as the ischemic penumbra. PET studies using 15O in acute stroke also often show a high OEF in the ischemic core as well as the ischemic penumbra, suggesting that the ischemic core under such conditions may remain viable at the time when PET is performed, although it is likely to die soon after that. Thus, cerebral tissue with increased uptake of 18F-FMISO in acute ischemia may represent a situation where increased OEF is combined with reduced CMRO_2, which corresponded with our results using 15O-gas and 18F-FRP 170 PET in chronic ischemia.

In the present study, while a positive correlation was observed between the OEF and 18F-FRP170 ratios, the area with an elevated OEF did not exhibit an elevated 18F-FRP170 ratio when the area had a normal CMRO_2. Several investigators showed that the degree of 18F-FMISO uptake is often greater in the ischemic core than in the ischemic penumbra in acute ischemia. Oxygen metabolism is theoretically reduced to a greater degree in the core versus penumbra. Thus, reduced CMRO_2 in addition to increased OEF may be an essential characteristic of hypoxic tissue in cerebral ischemia.
In contrast, areas with severely reduced CMRO₂ did not exhibit elevated 18F-FRP170 ratios, suggesting that the cerebral tissue in these areas might be non-viable.

Kuroda et al.42 suggested that reduced CBF in the normal-appearing cerebral cortex includes two pathophysiologically different conditions: misery perfusion due to hemodynamic compromise; and matched hypometabolism due to border zone infarction. 18F-FRP170 ratio may be elevated in the former condition. In contrast, for the latter condition, border zone infarction may cause selective neuronal damage in the normal-appearing cerebral cortex beyond the regions of infarcts, resulting in reduced metabolism in the cerebral cortex.43 In addition, metabolism in the cerebral cortex with border zone infarction may be reduced due to diaschisis from the infarction.43 Under such conditions, CBF was reduced with reduction in cerebral metabolism, resulting in non-elevated OEF and non-elevated 18F-FRP170 ratio. This may be a reason why the majority of areas with an abnormally elevated 18F-FRP170 ratio exhibited reduced CBF, although no correlation between CBF and 18F-FRP170 ratios was observed. In addition, the lowest CBF of ROIs with an abnormally elevated 18F-FRP170 ratio was 23.7 ml/100 g/min. CBF in the ischemic penumbra is reported to be < 20 ml/100 g/min.23 Our data suggested that non-infarcted tissue under hypoxic conditions may exist in the chronic ischemic regions with CBF values above the penumbra threshold.

Hypoxic tissue presenting as increased uptake of 18F-FMISO is metabolically compromised and at risk of infarction following acute ischemic stroke.9,10,12 Our data suggested that cerebral tissue may become hypoxic when oxygen metabolism begins to decline at the end stage of misery perfusion with deterioration of chronic cerebral ischemia due to atherosclerotic major cerebral artery steno-occlusive disease. If this hypothesis is correct, the following research questions are raised. Does hypoxic tissue
presenting as increased uptake of 18F-FRP170 in chronic cerebral ischemia subsequently succumb to irreversible brain damage over time? Does the hypoxic tissue disappear with recovery of CBF and oxygen metabolism after arterial reconstructive surgery? Is the disappearance of hypoxic tissue associated with improvement of cerebral function including cognition? Further studies aimed at answering these questions would be of benefit.

Conclusions

The present study using 15O-gas and 18F-FRP 170 PET demonstrated that tissue with an abnormally elevated uptake of 18F-FRP170, a direct marker of hypoxic but viable tissue, is present in human chronic cerebral ischemia with a combination of reduced perfusion, moderately reduced oxygen metabolism and misery perfusion due to unilateral atherosclerotic major cerebral artery steno-occlusive disease.

Sources of Funding

This work was partly supported by Grant-in-Aid for Strategic Medical Science Research (S1491001, 2014-2018) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grant-in-Aid for Scientific Research (2612345) from Japan Society for the Promotion of Science.

Disclosures
Kuniaki Ogasawara: Consigned research fund (3,500,000 yen) from Nihon Medi-Physics Co., Ltd.
References

33. Nishimiya M, Matsuda H, Imabayashi E, Kuji I, Sato N. Comparison of SPM and NEUROSTAT in voxelwise statistical analysis of brain SPECT and MRI at the early

Figure Legends
Fig. 1
Correlation between cerebral blood flow (CBF) and 1-(2-18F-fluoro-1-[hydroxymethyl]ethoxy) methyl-2-nitroimidazole (18F-FRP170) ratio in patients. The dashed horizontal line denotes mean + 2 standard deviations (SD) of 18F-FRP170 ratios obtained in healthy subjects. The dashed vertical line denotes 35.9 ml/100 g/min, which represents mean – 1.5 SD (for region-of-interest of the frontal cortex perfused by the middle cerebral artery [ROI$_{f-MCA}$] and region-of-interest of the parietal cortex perfused by the middle cerebral artery [ROI$_{p-MCA}$]) or mean – 1.8 SD (for region-of-interest of the temporal cortex perfused by the middle cerebral artery [ROI$_{t-MCA}$]) of CBF obtained in healthy subjects.

Fig. 2
Correlation between cerebral metabolic rate of oxygen (CMRO$_2$) and 18F-FRP170 ratio in patients. The dashed horizontal line denotes mean + 2 SD of 18F-FRP170 ratios obtained in healthy subjects. The right and left dashed vertical lines denote 3.31 ml/100 g/min and 2.51 ml/100 g/min, respectively. The former represents mean – 0.4 SD (for ROI$_{f-MCA}$) or mean – 0.6 SD (for ROI$_{p-MCA}$ and ROI$_{t-MCA}$) of CMRO$_2$ obtained in healthy subjects; the latter represents mean – 2.4 SD (for ROI$_{f-MCA}$ and ROI$_{t-MCA}$) or mean – 2.0 SD (for ROI$_{p-MCA}$) of CMRO$_2$ obtained in healthy subjects.

Fig. 3
Correlation between oxygen extraction fraction (OEF) and 18F-FRP170 ratio in
patients. The dashed horizontal line denotes mean + 2 SD of \(^{18}\text{F}-\text{FRP170} \) ratios obtained in healthy subjects. The dashed vertical line denotes 46.3%, which represents mean + 1.6 SD (for ROIs\text{MCA}^f) or mean + 1.3 SD (for ROIs\text{MCA}^p and ROIs\text{MCA}^\text{st}) of OEF obtained in healthy subjects. Open, half-tone and closed circles denote CMRO\text{2} > 3.31 ml/100 g/min, between 3.31 ml/100 g/min and 2.51 ml/100 g/min, < 2.51 ml/100 g/min, respectively.

Fig. 4

Positron emission tomography (PET) images from a 63-year-old woman with symptomatic right middle cerebral artery occlusion. CBF is severely reduced, CMRO\text{2} is moderately reduced, and OEF is elevated in the right temporal cortex when compared with the left cerebral hemisphere. That region exhibits relatively high accumulation of \(^{18}\text{F}-\text{FRP170} \).
Table 1. PET values obtained from healthy subjects and patients in ROIsf-MCA, ROIsp-MCA and ROIsb-MCA

<table>
<thead>
<tr>
<th></th>
<th>Healthy subjects (N = 10* or 20†)</th>
<th>Patients (N = 52‡)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROIsf-MCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{18})F-FRP170 ratio</td>
<td>Mean 1.000</td>
<td>1.013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD 0.047</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range 0.925-1.055</td>
<td>0.893-1.180</td>
<td>N.S.</td>
</tr>
<tr>
<td>CBF (ml/100 g/min)</td>
<td>Mean 46.8</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD 7.2</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range 34.7-57.4</td>
<td>23.7-50.2</td>
<td>0.0032</td>
</tr>
<tr>
<td>CMRO(_2) (ml/100 g/min)</td>
<td>Mean 3.44</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD 0.38</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>OEF (%)</td>
<td>2.78-3.83</td>
<td>37.9</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>1.76-3.85</td>
<td>42.0</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>0.0477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROIsp-MCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18F-FRP170 ratio</td>
<td>0.935-1.057</td>
<td>1.000</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>0.845-1.182</td>
<td>1.017</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>N.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBF (ml/100 g/min)</td>
<td>35.0-56.8</td>
<td>47.7</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>23.7-50.0</td>
<td>38.2</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Range</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>CMRO\textsubscript{2} (ml/100 g/min)</td>
<td>3.65</td>
<td>0.56</td>
<td>2.99-4.41</td>
</tr>
<tr>
<td>OEF (%)</td>
<td>40.8</td>
<td>4.4</td>
<td>35.1-48.3</td>
</tr>
<tr>
<td>18F-FRP170 ratio</td>
<td>1.000</td>
<td>0.046</td>
<td>0.935-1.076</td>
</tr>
<tr>
<td>CBF (ml/100 g/min)</td>
<td>47.2</td>
<td>6.3</td>
<td>39.1-7.3</td>
</tr>
</tbody>
</table>

0.0176

N.S.
<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMRO₂ (ml/100 g/min)</td>
<td>3.60</td>
<td>0.45</td>
<td>3.07-4.34</td>
<td>0.0019</td>
</tr>
<tr>
<td></td>
<td>3.13</td>
<td>0.48</td>
<td>1.99-3.87</td>
<td></td>
</tr>
<tr>
<td>OEF (%)</td>
<td>39.5</td>
<td>5.2</td>
<td>32.1-45.9</td>
<td>0.0336</td>
</tr>
<tr>
<td></td>
<td>42.4</td>
<td>5.4</td>
<td>35.7-58.6</td>
<td></td>
</tr>
</tbody>
</table>

* 18F-FRP170 ratio of ROI; † CBF, CMRO₂ and OEF of bilateral hemispheric ROIs; ‡ 18F-FRP170 ratio of ROI and CBF, CMRO₂ and OEF of ROI in the hemisphere ipsilateral to lesion.
Table 2. Sensitivity, specificity, PPV and NPV for each PET value for detection of an abnormally elevated 18F-FRP170 ratio

| Reduced CBF | Reduced CMRO$_2$ | reduced CMRO$_2$ | Elevated OEF | Elevated OEF and moderately reduced CMRO$_2$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF</td>
<td>CMRO$_2$</td>
<td>CMRO$_2$</td>
<td>OEF</td>
<td>OEF</td>
</tr>
<tr>
<td><35.9 ml/100 g/min</td>
<td><3.31 ml/100 g/min</td>
<td><3.31 ml/100 g/min</td>
<td>>46.3%</td>
<td>>46.3%</td>
</tr>
<tr>
<td></td>
<td>>2.51 ml/100 g/min</td>
<td>2.51 ml/100 g/min< CMRO$_2$</td>
<td></td>
<td><3.31 ml/100 g/min</td>
</tr>
</tbody>
</table>

<p>| Sensitivity | 89% (17/19) | 89% (17/19) | 89% (17/19) | 79% (15/19) | 68% (13/19) |
| 95% CIs | 76-103% | 76-103% | 76-103% | 61-97% | 48-89% |
| Specificity | 70% (96/137)| 55% (75/137)| 78% (107/137)| 91% (124/137)| 99% (135/137)|</p>
<table>
<thead>
<tr>
<th>PPV</th>
<th>29% (17/58)</th>
<th>22% (17/79)</th>
<th>36% (17/47)</th>
<th>54% (15/28)</th>
<th>87% (13/15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CIs</td>
<td>18-41%</td>
<td>12-31%</td>
<td>22-50%</td>
<td>35-71%</td>
<td>72-104%†</td>
</tr>
<tr>
<td>NPV</td>
<td>98% (96/98)</td>
<td>97% (75/77)</td>
<td>98% (107/109)</td>
<td>97% (124/128)</td>
<td>96% (135/141)</td>
</tr>
<tr>
<td>95% CIs</td>
<td>95-101%</td>
<td>94-101%</td>
<td>96-101%</td>
<td>94-100%</td>
<td>92-99%</td>
</tr>
</tbody>
</table>

PPV, positive-predictive value; NPV, negative-predictive value; *, significantly greater than reduced CMRO₂; †, significantly greater than reduced CBF, moderately reduced CMRO₂, or elevated OEF.