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A B S T R A C T   

Introduction: Parkinson’s disease (PD) is associated with gut dysbiosis. However, whether gut dysbiosis can cause 
motor complications is unclear. 
Methods: Subjects were enrolled from four independent movement disorder centers in Japan. We performed 16S 
ribosomal RNA gene sequence analysis of gut microbiota. Relative abundance of gut microbiota and relationships 
between them and clinical characteristics were statistically analyzed. Analysis of co-variance (ANCOVA) was 
used to assess altered gut microbiota associated with wearing-off or dyskinesia. 
Results: We enrolled 223 patients with PD. Wearing-off was noted in 47.5% of patients and dyskinesia in 21.9%. 
We detected 98 genera of bacteria. Some changes in the gut microbiota were observed in patients with PD and 
motor complications. After Bonferroni correction, patients with wearing-off showed decreased relative abun
dance of Lachnospiraceae Blautia (p < 0.0001) and increased relative abundance of Lactobacillaceae Lactobacillus 
(p < 0.0001), but patients with dyskinesia no longer showed significant changes in the gut microbiota. 
Adjustment with two models of confounding factors followed by ANCOVA revealed that age (p < 0.0001), 
disease duration (p = 0.01), and wearing-off (p = 0.0004) were independent risks for the decreased relative 
abundance of Lachnospiraceae Blautia, and wearing-off (p = 0.009) was the only independent risk factor for the 
increased relative abundance of Lachnospiraceae Lactobacillus. 
Conclusion: Relative abundance of Lachnospiraceae Blautia and Lactobacillaceae Lactobacillus was significantly 
decreased and increased, respectively, in the gut microbiota of PD patients with motor complications. This in
dicates that an altered gut microbiota is associated with the development of motor complications in patients with 
advanced PD.   

1. Introduction 

Recently, it has been suggested that the gut microbiota is involved in 
abnormal α-synuclein accumulation in the enteric plexus in patients 
with Parkinson’s disease (PD) [1]. Analysis of autopsied brains of 
normal subjects and PD patients shows that Lewy bodies migrate from 
the dorsal nucleus of the vagus nerve to the nucleus accumbens and the 

substantia nigra [2]. In the gastrointestinal tract, colonic biopsies of PD 
patients almost universally show abnormal α-synuclein accumulation in 
the enteric plexus, in both Meissner and Auerbach plexuses [3]. Total 
vagus nerve resection for the treatment of duodenal ulcers led to a 50% 
reduction in the incidence of PD in Denmark [4] and Sweden [5]. 
Intraperitoneal administration of abnormal α-synuclein in PD mouse 
models [6] or administration via the gastric wall in normal mice [7] 
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causes abnormal α-synuclein accumulation in the central nervous sys
tem (CNS). These findings suggest that pathological changes in PD may 
potentially originate from the enteric plexus via the vagus nerve. 
Involvement of the gut microbiota in abnormal α-synuclein accumula
tion in the enteric plexus is also indicated by the following findings. PD 
is associated with increased intestinal permeability [8,9], and when 
normal mice are intraperitoneally administered with blood lipopoly
saccharide, α-synuclein accumulates abnormally in the dorsal nucleus of 
the vagus nerve [10]. When α-synuclein-overexpressing mice is 
rendered sterile, motor deficits and constipation are mild, and trans
plantation of stool from PD patients into α-synuclein-overexpressing PD 
models causes severe motor deficits [11]. The pathogenesis of PD is 
thought to involve abnormal α-synuclein transmission to the CNS, and 
the gut microbiota plays an important role in α-synuclein accumulation 
and PD development. In addition to abnormal α-synuclein aggregates in 
the CNS after intraperitoneal [6] or gastric [7] injection of α-synuclein 
fibrils, it has been reported that vagotomy ameliorates oral 
rotenone-induced accumulation of α-synuclein fibrils in the dorsal vagal 
nucleus [12]. 

We previously conducted a multinational meta-analysis that 
revealed PD to be associated with gut dysbiosis [13]. In PD, the abun
dance of Akkermansia, an intestinal mucin layer-degrading bacteria, is 
increased while that of Roseburia and Faecalibacterium, short-chain fatty 
acid-producing bacteria, is decreased. However, whether gut microbiota 
are altered in patients with advanced PD and showing motor compli
cations remains unclear. 

As the disease progresses, PD patients receiving chronic dopamine 
replacement therapy experience motor complications known as 
wearing-off phenomenon and dyskinesia [14]. In clinical practice, the 
onset of motor complications is important, as it highlights an initial sign 
of progression to advanced stage PD. One of the hallmarks for the 
development of motor complications is the narrowing of the therapeutic 
range of dopaminergic drugs [15]. In the advanced stage of the disease, 
the rate of drug absorption from the small intestine becomes unstable 
because of poor gastrointestinal motility [16]. Gastrointestinal dysmo
tility and achlorhydria lead to abnormal growth of small intestinal 
bacteria [17], which is frequently seen in PD [18]. Patients with 
abnormal growth of small intestinal bacteria are more likely to have 
delayed-on or no-on episodes compared with patients without such 
abnormal growth [19]. Concomitantly, higher doses of dopaminergic 
drugs may induce a higher complication rate associated with abnormal 
small intestinal bacterial growth [18], which is related to duration of 
illness, Hoehn and Yahr (H&Y) severity classification, unified PD rating 
scale (UPDRS) part III severity, and severity of motor complications. 
These changes necessitate stabilization of plasma or central nervous 
system levels of dopaminergic drugs. In addition, gut microbiota may 
inhibit the absorption of L-dopa by decreasing the acidity of gastric juice. 
L-dopa dissolves under acidic conditions; therefore, administration of 
L-dopa in lemon water increases plasma levels of L-dopa and improves 
motor function [20]. In addition, inhibiting the growth of bacteria in the 
small intestine improves the decline in motor function without affecting 
the pharmacokinetics of L-dopa [18]. Therefore, the intestinal micro
biota may be associated with the development of motor complications. 
In this study, we aimed to compare gut microbiota in PD patients with 
and without motor complications. 

2. Methods 

2.1. Study design and subjects 

We conducted a multicenter cross-sectional study at four indepen
dent movement disorder centers in Japan. The study protocol was 
explained to PD patients and their healthy spouses living in the same 
household. The registration period was from September 2015 to 
February 2018. All PD patients were diagnosed according to the Inter
national Parkinson and Movement Disorder Society (MDS) PD criteria 

and were 20 years old or more. Confirmed information, including 
duration of illness and therapeutic history, was collected for all patients. 
Chronic systemic diseases, including diabetes mellitus, heart failure, 
cirrhosis, malignant neoplasms, hematopoietic system diseases, auto
immune diseases, and neurological diseases other than PD were 
excluded. Subjects who claimed to have taken antibiotics in the past 
month were also excluded. 

This study received ethical approval from the ethics review com
mittees of each of the four centers involved: the Nagoya University 
Graduate School of Medicine (approval number 2016-0151), Iwate 
Medical University (H28-123), Okayama Kyokuto Hospital (kyoIR- 
2016002), and Fukuoka University Graduate School of Medicine 
(2016M027). 

2.2. Sample collection, DNA isolation and V3–V4 16S rRNA sequencing 

The details of these procedures are described elsewhere [13]. Briefly, 
after obtaining written informed consent, clinical characteristics were 
recorded, including age, sex, smoking history, previous medical history, 
duration of illness, body mass index (BMI), and anti-parkinsonian medica
tions. Stool appearance was also scored by the participants at their homes 
using the Bristol stool form scale. Neurological examinations were per
formed by neurologists, and the clinical severity of parkinsonism was 
assessed using H&Y staging and the MDS-UPDRS by movement disorder 
specialists certified by the MDS. Fecal samples were collected in special 
collection tubes and sent under refrigeration directly to Nagoya University. 
DNA was extracted using the QIAmp PowerFecal DNA Kit (QIAGEN, Hilden, 
Germany) and the bacterial composition was analyzed by next-generation 
sequencing. The V3–V4 hypervariable region of the bacterial 16S rRNA 
gene was amplified using primer 341F, 5′-CCTACGGGNGGCWGCAG-3′ and 
primer 805R, 5′-GACTACHVGGGTATCTAATCC-3′. Paired-end sequencing 
of 300-nucleotide fragments was performed using the MiSeq reagent kit V3 
on a MiSeq System (Illumina). Taxonomic analysis with QIIME2 was also 
previously described in detail [13]. Briefly, amplicon sequence variants 
were generated using DADA2, and the SILVA taxonomy database release 
132 (60) was used for taxonomic identification. We excluded gut bacteria 
with a relative abundance of less than 0.001% in each of the 223 PD pa
tients, because they were only found in a limited number of patients. FASTQ 
files of our dataset are available at the DNA Data Bank of Japan under the 
accession numbers DRA009229 and DRA009322. 

2.3. Statistical analysis 

We used Wilcoxon’s rank-sum test to analyze the clinical charac
teristics and gut microbiota of patients with and without motor com
plications. We analyzed the relationship between gut microbiota and sex 
using Wilcoxon’s rank-sum test and Bonferroni correction, and the 
relationship between gut microbiota and age, duration of illness, BMI, 
daily L-dopa dose, constipation, and antacid drugs use using generalized 
linear model analysis. Analysis of co-variance (ANCOVA) was performed 
to detect independent co-variants and exclude the effects of confounding 
factors, which included age, sex, duration of illness, daily L-dopa dose, 
catechol-o-methyl transferase (COMT) inhibitor use, wearing-off, and 
dyskinesia. We have previously shown that COMT inhibitors affect the 
overall composition of the gut microbiota of PD patients [13]. Therefore, 
we designed two analysis models with and without both COMT inhibitor 
and daily L-dopa dose as confounding factors. Model 1 was constructed 
with both these factors excluded and model 2 was with all the con
founders included. A p-value less than 0.05 was considered statistically 
significant. 

3. Results 

3.1. Clinical background of PD patients 

A total of 223 patients with PD were enrolled in this study. Their 
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clinical characteristics are shown in Table 1. Power analysis showed this 
to be a sufficient number of patients. 

The general mean age was 68.2 ± 8.5 (41–85) years, BMI was 21.7 ±
3.0 (15.2–30.8) kg/m2, and duration of illness was 7.5 ± 6.1 (0.2–42) 
years. Clinical severity was 2.4 ± 0.8 (stage 1: 30 patients, stage 2: 99 
patients, stage 3: 73 patients, stage 4: 16 patients, and stage 5: 5 pa
tients) according to H&Y staging and 50.1 ± 23.1 (0–153) according to 
the MDS-UPDRS. Mean MDS-UPDRS part IV score was 2.7 ± 3.2 (0–13). 
PD patients were also categorized by the presence of wearing-off and 
dyskinesia and their clinical characteristics are shown in Table 1. 
Wearing-off was noted in 106 patients (47.5%) and dyskinesia in 49 
patients (21.9%). Between with and without wearing-off, there were 
significant differences in age (p = 0.0148), BMI (p = 0.0291), and 
duration of illness (p < 0.0001). Similarly, between with and without 
dyskinesia, there were significant differences in age (p = 0.0224), BMI 
(p = 0.0350), and duration of illness (p < 0.0001). 

3.2. Relationship between gut microbiota and motor complications 

Ninety-eight genera of bacteria satisfied the detection criteria of this 
study. Differences in the relative abundance of these species were 
observed in PD patients with motor complications. In PD patients with 
wearing-off, there was increased relative abundance of Lachnospiraceae 
NK4A136 (p = 0.0285), Lactobacillaceae Lactobacillus (p < 0.0001), 
Bifidobacteriaceae Bifidobacterium (p = 0.0326), Desulfovibrionaceae 
Bilophila (p = 0.0238), Ruminococcaceae Oscillibacter (p = 0.0460), and 
Lachnospiraceae Tyzzerella (p = 0.0100), and decreased relative abun
dance of Lachnospiraceae Blautia (p < 0.0001), Lachnospiraceae Fusica
tenibacter (p = 0.0071), Lachnospiraceae Anaerostipes (p = 0.0440), and 
Lachnospiraceae Eligens group (p = 0.0390). In patients with PD and 
dyskinesia, increased relative abundance of Prevotellaceae Alloprevotella 
(p = 0.0294) and Lachnospiraceae Pediococcus (p = 0.0130), and 
decreased relative abundance of Lachnospiraceae Blautia (p = 0.0408) 
and Eggerthellaceae Eggerthella (p = 0.0226) were observed. Significant 
decrease in Lachnospiraceae Blautia and increase in Lactobacillaceae 
Lactobacillus were associated with wearing-off and dyskinesia, 
respectively. 

The relative abundance of Lachnospiraceae Blautia and Lactobacilla
ceae Lactobacillus after adjustment for confounding factors using Bon
ferroni correction are shown in Fig. 1. In patients with wearing-off, 
Lachnospiraceae Blautia showed a significant decrease (A) (p < 0.0001) 
and Lactobacillaceae Lactobacillus showed a significant increase (C) (p <
0.0001). Patients with dyskinesia demonstrated no changes in the 
relative abundance of Lachnospiraceae Blautia (B) and Lactobacillaceae 

Lactobacillus (D). 

3.3. Relationship between motor complications and Lachnospiraceae 
Blautia or Lactobacillaceae Lactobacillus 

Generalized linear model analysis showed significant clinical fea
tures associated with decreased relative abundance of Lachnospiraceae 
Blautia and increased relative abundance of Lactobacillaceae Lactoba
cillus. As shown in Fig. 2, a decrease of Lachnospiraceae Blautia was 
significantly correlated with age (A) (r2 = 0.03, p = 0.0057), duration of 
illness (B) (r2 = 0.07, p < 0.0001), COMT inhibitor use (C) (r2 = 0.03, p 
= 0.005), and daily L-dopa dose (D) (r2 = 0.07, p < 0.0001). There was 
no significant correlation with BMI. Increased relative abundance of 
Lactobacillaceae Lactobacillus was significantly correlated with duration 
of illness (E) (r2 = 0.03, p = 0.007), BMI (F) (r2 = 0.02, p = 0.019), 
COMT inhibitor use (G) (r2 = 0.18, p < 0.0001), and daily L-dopa dose 
(H) (r2 = 0.18, p < 0.0001). There was no significant correlation with 
age. 

3.4. Factors associated with decreased Lachnospiraceae Blautia and 
increased Lactobacillaceae Lactobacillus relative abundance 

The decreased relative abundance of Lachnospiraceae Blautia and 
increased relative abundance of Lactobacillaceae Lactobacillus were 
assessed by two adjustment models for different confounding factors 
with ANCOVA analysis (Table 2A and B, respectively). A relative 
decrease of Lachnospiraceae Blautia abundance was significantly asso
ciated with age (p < 0.0001, 95% confidence intervals (CI) [− 0.001, 
− 0.0003]), duration of illness (p = 0.01, 95% CI [− 0.001, − 0.00021]), 
and wearing-off (p = 0.0004, 95% CI [− 0.027, − 0.007]) in model 1, and 
with age (p = 0.002, 95% CI [− 0.001, 0.0002]) and COMT inhibitor use 
(p < 0.0001, 95% CI [− 0.03, 0.012]) in model 2. A relative increase of 
Lachnospiraceae Lactobacillus abundance was significantly associated 
with wearing-off (p = 0.009, 95% CI [0.006, 0.045]) in model 1, and 
with sex (p = 0.02, 95% CI [0.002, 0.03]) and daily L-dopa dose (p <
0.0001, 95% CI [0.00007, 0.0001]) in model 2. This analysis, using two 
models of confounding factors, estimated that age and COMT inhibitor 
use were strong confounding factors associated with relatively 
decreased abundance of Lachnospiraceae Blautia and that daily L-dopa 
dose was a strong confounding factor associated with relatively 
increased abundance of Lactobacillaceae Lactobacillus. This analysis 
showed that age, duration of illness, and wearing-off were independent 
factors associated with decreased relative abundance of Lachnospiraceae 
Blautia and wearing-off was an independent factor associated with 

Table 1 
Clinical background of patients with or without motor complications.   

Total wearing off dyskinesia 

(− ) (+) (− ) (+) 

number, F:M, total 128:95, 223 60:57, 117 68:38, 106 94:80, 174 34:15, 49 
age, mean ± SD, range (years) 68.2 ± 8.5, 41-85 69.1 ± 9.2, 41-84 67.2 ± 7.7, 47-85 68.7 ± 8.6, 41-84 66.6 ± 8.2, 49-85 
BMI, mean ± SD, range (kg/m2) 21.7 ± 3.0, 15.2–30.8 22.0 ± 2.8, 16.4–30.8 21.3 ± 3.2, 15.2–29.7 21.9 ± 3.0, 15.5–30.8 20.9 ± 2.9, 15.2–28.2 
duration of illness, mean ± SD, range (years) 7.5 ± 6.1, 0.2–42 5.1 ± 5.2, 0.2–28 10.1 ± 6.07, 1-42 6.6 ± 6.0, 0.2–42 10.7 ± 5.6, 1-28 
L-dopa dosage, mean ± SD, range (mg/day) 354.4 ± 238.5, 0-2000 299.1 ± 238, 0-1450 415.6 ± 224.8, 0-2000 337.3 ± 259.3, 0-2000 415.3 ± 126.7, 100-700 
H&Y stage, mean ± SD 2.4 ± 0.8, 1-5 2.3 ± 0.9, 1-5 2.5 ± 0.8, 1-4 2.3 ± 0.9, 1-5 2.5 ± 0.8, 1-4 

stage 1 (number) 30 19 11 26 4 
stage 2 (number) 99 58 41 79 20 
stage 3 (number) 73 31 42 53 20 
stage 4 (number) 16 4 12 11 5 
stage 5 (number) 5 5 0 5 0 

MDS-UPDRS, mean ± SD, range 50.1 ± 23.1, 0-153 44.6 ± 23.0, 0-153 55.9 ± 21.8, 11-115 48.8 ± 23.6, 0-153 54.6 ± 21.0, 11-115 
part I, mean ± SD, range 8.8 ± 5.0, 0-21 8.0 ± 5.1, 0-21 9.6 ± 4.9, 0-20 8.5 ± 5.2, 0-21 9.6 ± 4.4, 2-20 
part II, mean ± SD, range 11.8 ± 8.1, 0-48 10.2 ± 8.0, 0-48 13.6 ± 7.8, 1-36 11.2 ± 8.1, 0-48 14.3 ± 7.7, 1-36 
part III, mean ± SD, range 26.8 ± 13.4, 0-84 26.2 ± 13.5 27.4 ± 13.3, 4-61 27.7 ± 13.7, 0-84 23.8 ± 12.2, 4-58 
part IV, mean ± SD, range 2.7 ± 3.2, 0-13 0.1 ± 0.7, 0-5 5.3 ± 2.6, 1-13 1.4 ± 2.1, 0-8 7.0 ± 2.5, 3-13 

F, female; M, male; SD, standard deviation; BMI, body mass index; H&Y, Hoehn and Yahr; MDS-UPDRS, the International Parkinson and Movement Disorder Society 
version unified Parkinson’s disease rating scale. 
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increased relative abundance of Lactobacillaceae Lactobacillus. 

4. Discussion 

We observed that the relative abundance of Lachnospiraceae Blautia 
was decreased and that of Lactobacillaceae Lactobacillus was increased in 
PD patients with motor complications. These findings disappeared after 
adjustments for clinical characteristics, including oral medications. 
Previous reports from ourselves and others [9,13,21,22] have shown 
that COMT inhibitors, which was entacapone in this study, have a strong 
influence on the overall composition of gut microbiota. Therefore, we 
used two models of confounders: one excluded the strong COMT in
hibitor confounder and associated L-dopa, and the other included all 
confounders, because PD patients with motor complications, especially 
those with wearing-off, are ordinarily treated with relatively high doses 
of L-dopa combined with an adjunctive COMT inhibitor. Based on this 
analysis, we suggest that the altered gut microbiota can modify the 
clinical course of wearing-off development in advanced stage PD pa
tients, and, as such, is a candidate pathogenic mechanism for motor 
complications. Gut dysbiosis has already been associated with the 
development of PD. Motor complications associated with dopamine 
replacement therapy manifest during the long-term clinical course of the 
disease and dyskinesia commonly occurs following wearing-off. Because 
wearing-off is a well-recognized correlated factor of dyskinesia, a sta
tistical relationship between a relative change in Lachnospiraceae Blautia 
or Lactobacillaceae Lactobacillus abundance and dyskinesia may not be 
noticeable in multivariate analysis. In addition, the small sample size of 
patients with dyskinesia may also explain why we did not observe a 
significant relationship. We cannot exclude the possibility that the 
sample of patients with motor complications was too small to confirm 
whether or not dyskinesia is associated with an altered gut microbiota. It 
is extremely important to clarify whether the relative changes in Lach
nospiraceae Blautia and Lactobacillaceae Lactobacillus have any impact on 
the development of motor complications. However, we cannot conclude 

whether or not our results are a primary cause of motor complications. 
Despite this, our study does indicate relationships between them that 
warrant further investigation. 

In addition to wearing-off, age was also noted to be significantly 
associated with a decrease in the relative abundance of Lachnosperaceae 
Blautia, which is already known to decrease with aging [23]. Increased 
Lactobacillaceae Lactobacillus abundance was associated with sex and 
daily L-dopa dose. Female sex is a well-known risk factor for motor 
complications; therefore, an increase in Lactobacillaceae Lactobacillus is a 
possible risk factor of developing motor complications [24]. PD patients 
with wearing-off need relatively higher doses of L-dopa per day, which is 
a risk factor for developing motor complications. This evidence together 
with our results indicate that aging, female sex, and higher daily doses of 
L-dopa, together with an altered gut microbiota, are risk factors of motor 
complications. We also detected gut dysbiosis that was not associated 
with Lachnospiraceae Blautia or Lactobacillaceae Lactobacillus. There was 
a different microbiota distribution between patients with wearing-off 
and those with dyskinesia. We previously reported increased abun
dance of genera Akkermansia and Catabacter and families Akkermansia
ceae and decreased abundance of genera Roseburia and Faecalibacterium 
and Lachnospiraceae ND3007 group in PD [9,13]. After adjusting for 
confounding factors, including COMT inhibitor use, the present results 
are consistent with previous reports. However, differences in gut dys
biosis between motor complications remain to be clarified. 

Lachnospiraceae Blautia is a gram-positive, anaerobic, enteric bacte
ria that inhibits inflammatory reactions [25]. Its abundance is decreased 
in patients with liver cirrhosis, cancers, bowel diseases, and diabetes 
mellitus. Lachnospiraceae Blautia is relatively more abundant in Japa
nese people than in people of other countries [26]. PD is more prevalent 
in patients with inflammatory bowel disease [27] or diabetes mellitus 
[28]; therefore, Lachnospiraceae Blautia may modify the disease. This 
may also explain why the frequency of motor complications in Japan is 
lower than that in other countries [29]. The reason for the high preva
lence of Lachnospiraceae Blautia in Japanese people is unclear, but a 

Fig. 1. Relationships between Lachnospiraceae Blautia or Lactobacillaceae Lactobacillus and motor complications 
In patients with wearing-off, the relative abundance of Lachnospiraceae Blautia (A) and Lactobacillaceae Lactobacillus (C) significantly decreased and increased, 
respectively. Patients with dyskinesia (B and D) showed no change in relative abundance. 
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plausible hypothesis is that the koji used in Japanese fermented foods, 
such as soy sauce, miso, traditional pickles, and Japanese sake, can 
contribute to an increased abundance of Lachnospiraceae Blautia [30]. 
Our study did not examine the dietary habits of individual patients. 
Changes in dietary habits are easy to introduce for PD patients; there
fore, such a minor change may have a substantial disease-modifying 
effect in the long-term. 

Lactobacillaceae Lactobacillus, a lactic acid-producing bacteria, has 
long been used in the production of cheese and other dairy products. 
Probiotics containing Lactobacillaceae Lactobacillus have some beneficial 
effects in PD via inhibition of inflammatory cytokines, antioxidant ef
fects, and improving bioavailability of L-dopa [31]. In addition, sup
plemental probiotic Lactobacillaceae Lactobacillus reduced clinical scores 
of motor symptoms in a preliminary open-label small study [32]. Our 

study showed an increase in Lactobacillaceae Lactobacillus abundance in 
PD patients treated with a COMT inhibitor. The mechanism for this is 
still unclear. 

This study has some limitations. First, this study is a cross-sectional 
observational study; therefore, the findings cannot clearly assert a 
causal relationship. Second, the number of PD patients enrolled may be 
insufficient, especially patients with PD and dyskinesia. In addition, all 
PD patients were Japanese. Third, daily L-dopa doses are relatively low 
in Japanese patients with motor complications compared with doses in 
other countries, which could influence the frequency or severity of 
motor complications. Fourthly, we did not collect dietary data. Future 
studies require larger enrollment and prospective tracking of the onset 
of motor complications. 

Fig. 2. Relationships between Lachnospiraceae Blautia 
or Lactobacillaceae Lactobacillus and clinical charac
teristics. 
COMT, catechol-o-methyl transferase; BMI, body mass 
index. 
Decreased abundance of Lachnospiraceae Blautia 
significantly correlated with age (A), duration of 
illness (B), daily L-dopa dose (C), and COMT inhibitor 
use (D). Increased abundance of Lactobacillaceae 
Lactobacillus was significantly correlated with dura
tion of disease (E), BMI (F), daily L-dopa dose (G), and 
COMT inhibitor use (H).   
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5. Conclusions 

PD patients with motor complications showed significant changes to 
their gut microbiome, exemplified by a decrease of Lachnospiraceae 
Blautia and an increase of Lactobacillaceae Lactobacillus. Wearing-off was 
an independent associating factor common to both altered bacteria 
when involvement of a COMT inhibitor was excluded. This is the first 
evidence of gut dysbiosis as a possible mechanism for motor complica
tions associated with PD. We suggest that gut dysbiosis is not only 
associated with the onset of PD but also with the development of motor 
complications. 
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