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Abstract: The immunomodulatory ability of mesenchymal stem cells （MSCs） is synergistically 
regulated through cell contact-dependent mechanisms and secretion of soluble factors. TGF-㌼1 plays 
an important role in immunosuppression. In this study, the expression of TGF‑㌼ 1-induced 
inflammation-related cytokines, chemokines, and growth factors in the human MSC line, UE7T-13, was 
investigated. The expression levels of NGF and IL-6 in UE7T-13 cells were significantly enhanced by 
TGF‑㌼1 stimulation. TGF-㌼1-induced expression of IL-6 was attenuated by a TGF-㌼ receptor inhibitor 
and an MEK inhibitor. These results indicate that TGF-㌼1 increases IL-6 expression via the MEK 
pathway in human MSCs. Considering that TGF-㌼1 increased the expression levels of both NGF and 
IL-6 in the MSCs, we further investigated the effect of the cytokines secreted from UE7T-13 cells on 
neurite extension of neuronal PC12 cells. We found that the neurite extension in PC12 cells was 
significantly enhanced in the conditioned medium derived from TGF-㌼1-pretreated UE7T-13 cells. In 
addition, it was significantly enhanced by the indirect co-culture of PC12 cells and TGF-㌼1-stimulated 
UE7T13 cells under transwell conditions. Interestingly, these enhancements of neurite extension 
mediated using the conditioned medium or indirect co-culture were negated by the addition of a 
neutralizing antibody against the soluble IL-6 receptor in the culture media. We also confirmed that 
the administration of both IL-6 and soluble IL-6 receptors to PC12 cells did not promote these neurite 
extensions. Overall, these results suggest that NGF secreted from TGF-㌼1-stimulated MSCs induces 
neuronal differentiation of PC12 cells, which is further enhanced by IL-6 secreted from MSCs.

Key words: Mesenchymal stem cells, Transforming growth factor-㌼1, Nerve growth factor, 
Interleukin-6, Neurite extension
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Introduction

Mesenchymal stem cells （MSCs） are adult 
stem cells isolated from various tissues such 
as bone marrow, adipose tissue, and the 
umbilical cord tissue 1）, 2）. MSCs contribute to 
the repair of damaged tissue owing to their 
multipotency 3）, 4）; they are activated by 
cytokines released from the immune cells in 
damaged tissues and have anti-inflammatory 
effects 5）, 6）. The effectiveness of MSCs has been 
demonstrated in both regenerative medicine 
and the animal models for inflammatory and 
autoimmune diseases 7）, 8）, 9）, 10）, 11）.

The transforming growth factor-㌼ （TGF-㌼） 
family, the factors belonging to which have 
three isoforms （㌼1, ㌼ 2, and ㌼ 3） plays an 
important role in the regulation of immune 
responses 12）. Among all the factors, TGF-㌼1 
downregulates various immune responses as 
an immunosuppressive molecule and is 
associated with immune diseases 13）. TGF-㌼1 
is secreted by immune cells containing 
macrophages homing to inflammatory tissues, 
and is known to play an important role in 
immunosuppression 13）, 14）. Macrophages are 
immune cells that regulate cell proliferation 
and differentiation by secreting various 
cytokines. Tumor necrosis factor （TNF）- α , 
interleukin （IL）-6 and chemokine C-X-C motif 
ligand （CXCL） family of pro-inflammatory 
cytokines and chemokines are secreted by M1 
macrophages stimulated by lipopolysaccharide 

（LPS） and interferon （IFN）-γ 15）. However, 
growth factors such as TGF-㌼1, fibroblast 
growth factor （FGF）, platelet-derived growth 
factor （PDGF） and vascular endothelial 
growth factor （VEGF） are secreted by M2 
macrophages differentiated by IL-4 and 
IL-13 and play an important role in tissue 
repair 16）, 17）.

TGF-㌼1 is known to induce nerve growth 
factor （NGF） expression in various cell 
types 18）, 19）. While TGF-㌼ 1-induced NGF 
expression is promoted in chondrocytes by 
Smad2/3-dependent signaling 20）, the activation 
of the c-Jun N-terminal kinase （JNK） and p38 
mitogen-activated protein kinase （MAPK） 
signaling pathways occurs in dental pulp 
ce l ls  21）. In addition, our recent study 
demonstrated TGF‑㌼1-induced NGF expression 
via the Smad2/3 signaling pathway and 
p38  MAPK ac t iva t i on  in  per i odonta l 
ligament‑derived fibroblasts 22）. Interestingly, 
this increased expression of NGF was 
suppressed by the st imulat ion of  pro-
inflammatory cytokines, such as TNF- α and 
IL-1㌼.

In this study, the expression of TGF-㌼
1-induced inflammation-related cytokines, 
chemokines, and growth factors in MSCs was 
investigated. The expression levels of NGF 
and IL-6 in MSCs were increased by TGF-㌼1 
stimulation. We also reported that NGF-
induced neurite extension is enhanced by the 
co-stimulation of IL-6 secreted by MSCs along 
with NGF.

Materials and Methods

Reagents
Recombinant human TGF-㌼1 was purchased 

from Pepro Tech., Inc. （Cranbury, NJ, USA）. 
Recombinant human NGF and IL-6 were 
obtained from R&D systems, Inc. （Minneapolis, 
MK, USA）. Recombinant human soluble IL-6 
receptor （sIL-6R） was purchased from Biorbyt 
LLC. （St Louis, MO, USA）. Neutralizing anti-
Human IL-6R/CD126 antibody was purchased 
from Sino Biological Inc. （Wayne, PA, USA）. 
The TGF-㌼ type I receptor inhibitor SB-431542 
was supplied by Cell Signaling Technology, 
Inc. （Beverly, MA, USA）. The p38 MAPK 
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inhibitor SB203580, JNK inhibitor SP600125, 
MAPK/ERK inhibitor U0126, and Smad3 
inhibitor SIS3 were obtained from Merck 
KGaA （Calbiochem; Darmstabt, Germany）. 

Cell culture
All cell cultures were maintained at 37°C in 

a humidified atmosphere with 5% CO2. Human 
bone marrow-derived MSC line, UE7T-13, 
whose life span was prolonged by a retrovirus 
encoding human papillomavirus E7 and 
hTERT 23）, 24）, 25）, 26）, were purchased from 
the  Japanese  Co l l ec t i on  o f  Research 
Bioresources Cell Bank （JCRB No. 1154, 
Tokyo, Japan）. UE7T-13 cells were cultured 
on plastic dishes （Thermo Fisher Scientific, 
Inc） in Dulbecco’s modified Eagle’s medium 

（DMEM） （Sigma-Aldrich; Merk KGaA） 
supplemented with 10% fetal bovine serum 

（FBS）, penic i l l in  （50 uni ts/mL） and 
streptomycin （50 units/mL） （Invitrogen; 
Thermo Fisher Scientific, Waltham, MA, 
USA）. Rat pheochromocytoma PC12 cells 
obtained from RIKEN BioResource Research 
Center Cell Bank （Ibaraki, Japan） were 
cultured on type I collagen tissue culture 
plastic dishes in DMEM supplemented with 
5% FBS, 10% horse serum and penicillin （50 
units/mL）-streptomycin （50 units/mL）.

RNA isolation and reverse transcription-
quantitative polymerase chain reaction （RT-
qPCR）

Total RNA was extracted using the ISOGEN 
I reagent （Nippon Gene Co., Ltd., Toyama, 
Japan）. The concentration and quality of the 
t o t a l  R N A  w e r e  m e a s u r e d  u s i n g  a 
spec t ropho tometer  B i o  Drop   µL i t e+ 

（Biochrom Ltd., Cambridge, United Kingdom）. 
First-strand complementary DNA （cDNA） 
was synthesized using the PrimeScript RT 

reagent kit （Takara Bio, Inc., Shiga, Japan） 
according to the manufacturer's instructions. 
Fluorescence RT-qPCR was performed 
through  a  two - s t ep  cyc l e  procedure 

（denaturation at 95 °C for 5 s and annealing 
and extension at 60 °C for 30 s） for 40 cycles 
on a Thermal Cycler Dice Real Time System 

（Takara Bio） with SYBR Premix Ex Taq II 
（Takara Bio） and specific oligonucleotide 
primers （Table 1）. Each PCR required cDNA 
derived from 50 ng total RNA as a template 
and 0.4 µM of each primer pair. The mRNA 
expression level was normalized to that of 
glyceraldehyde 3-phosphate dehydrogenase 

（GAPDH）, and the relative amount of mRNA 
in each sample was calculated via the ΔΔ Cq 
method. Relative mRNA expression levels 
were expressed as the fold increase or 
decrease relative to those of the control.

Enzyme-linked immunosorbent assay （ELISA）
UE7T-13 cells were stimulated with or 

without 10 ng/mL TGF-㌼ 1 for 72 h. The 
amount of secreted IL-6 was measured using 
sandwich ELISA kits for human IL-6 （R&D 
Systems Inc.）. The IL-6 protein concentration 
was measured according to the manufacturer’s 
instructions. Absorbance was measured using 
an MPR-A4i microplate reader （Tosoh Corp., 
Tokyo, Japan）.

Examining neurite extension in PC12 cells
PC12 cells were treated with Calcein-AM 

solution （Dojindo Molecular Technologies, Inc., 
Kumamoto ,  J apan） accord ing  t o  t he 
manufacturer's instructions. The status of 
neurite extensions emerging from PC12 cells 
was observed using a DM IL LED fluorescence 
microscope with an N PLAN L 40×0.55 CORR 
PH2 objective lens （Leica Microsystems, 
Allendale, NJ, USA） under phase-contrast or 
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fluorescent at 480 nm excitation. In addition, 
statistical assessment of neurite extension was 
performed as follows: cells bearing neurites 
longer than the length of the cell body were 
counted as cells with neurite extension. 
Neurite-extended and non-extended PC12 cells 
were counted in eight different microscopic 
fields. The ratio of the number of neurite-
extended cells to the total number of PC12 
cells in the field was statistically analyzed.

Evaluation of neurite extension triggered by the 
conditioned medium of TGF-β1-stimulated 
UE7T-13 cells

UE7T-13 cells （7.0 × 104 cells/well） were 
cultured in 12-well tissue culture plates. The 
cells were stimulated with 20 ng/mL TGF-㌼1 
for 72 h, and the conditioned medium was 
r ecovered .  The  cond i t i oned  med ium 
supplemented with or without sIL-6R （50 ng/
mL） and/or sIL-6R neutralizing antibody 

（2 µg/mL） was used as the culture medium 

Reactivity Target gene Primer sequence （5' - 3'）
Human GAPDH F: GCACCGTCAAGGCTGAGAAC

R: ATGGTGGTGAAGACGCCAGT
NGF F: TCAGCGTCCGGACCCAATA

R: CTGAGTGTGGTTCCGCCTGTA
IL-6 F: AAGCCAGAGCTGTGCAGATGAGTA

R: TGTCCTGCAGCCACTGGTTC
FGF2 F: GTGTGCTAACCGTTACCTGGCTATG

R: CCAGTTCGTTTCAGTGCCACA
TGF-㌼1 F: GCGACTCGCCAGAGTGGTTA

R: GTTGATGTCCACTTGCAGTGTGTTA
IL-1㌼ F: CCAGGGACAGGATATGGAGCA

R: TTCAACACGCAGGACAGGTACAG
TNF- α F: CTGCCTGCTGCACTTTGGAG

R: ACATGGGCTACAGGCTTGTCACT
CXCL12 F: GAGCCAACGTCAAGCATCTCAA

R: TTTAGCTTCGGGTCAATGCACA
CCL2 F: CTTCTGTGCCTGCTGCTCATA

R: CTTTGGGACACTTGCTGCTG
PDGF F: GGCATCGTGCGTGACAATTA

R: CTGAGGCTCCCAGAGTGAGA
Rat GAPDH F: GGCACAGTCAAGGCTGAGAATG

R: ATGGTGGTGAAGACGCCAGTA
NGF F: TGCCAAGGACGCAGCTTTC

R: TGAAGTTTAGTCCAGTGGGCTTCAG
IL-6 F: ATTGTATGAACAGCGATGATGCAC
　 R: CCAGGTAGAAACGGAACTCCAGA

Table 1．Sequences of the RT-qPCR oligonucleotide primers used in this study.
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for PC12 cells （1.0 × 104 cells/well） on type I 
collagen-coated 12-well tissue culture plates. 
The neurite extension in PC12 cells cultured in 
the conditioned medium of TGF-㌼1-stimulated 
UE7T-13 cells at 72 h was evaluated.

Evaluation of neurite extension triggered by a 
transwell co-culture system

UE7T-13 and PC12 cells were cultured by 
indirect co-culture, which was performed using 
a transwell co-culture system. The transwell 
co-culture system comprised a polycarbonate 
transwell chamber （BD Bioscience, Franklin 
Lakes, NJ, USA）, which could be inserted into 
the wells of the standard 24-well plates. PC12 
cells （3.0 × 104 cells/well） were seeded on the 
bot tom of  the 24 -wel l  cu l ture p la tes . 
Subsequently, UE7T-13 cells （5.0 × 103 cells/
well） were seeded on the upper membrane 

（pore size of 0.4 µm） of the transwell chamber. 
UE7T-13 cells on the upper membrane were 
stimulated with or without 20 ng/mL of TGF-

㌼1, after which sIL-6R （25 ng/mL） and sIL-6R 
neutralizing antibody （4 µg/mL） were added 
to the lower level. After 72 h of culture, the 
extent of neurite extension in PC12 cells on 
the lower side was evaluated.

Statistical analysis
The data are presented as the mean ± 

standard deviation （SD） and were statistically 
analyzed using Tukey’s multiple comparison 
test. Differences were considered statistically 
significant at P < 0.05. The results are 
representative of at least three separate 
experiments.

Results

TGF- β1 increases NGF expression in human 
MSCs

UE7T-13 cells were stimulated with TGF-㌼1 
and the mRNA expression level of NGF was 
determined via real-time qRT-PCR analysis. 
As shown in Fig. 1, the mRNA expression 

Fig. 1. �Regulation of NGF expression in MSCs stimulated with TGF-β1
UE7T-13 cells were stimulated with TGF-㌼1 and then the mRNA expression level of NGF was 
investigated by RT-qPCR. （A） UE7T-13 cells were stimulated with 10 or 50 ng/mL TGF-㌼1 for 
24 h. （B） UE7T-13 cells were stimulated with 10 ng/mL TGF-㌼1 in a time period between 1 to 
24 h. NGF mRNA expression levels in each sample were normalized to GAPDH, and the results 
are expressed as the fold change relative to the unstimulated control. Data are presented as the 
mean ± SD （n=5）. The values of *P < 0.05 was considered statistically significant.
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Fig. 2. �Expression of several cytokines, chemokines, and growth factors in MSCs stimulated with TGF- β1
UE7T-13 cells were stimulated with various concentration of TGF-㌼1 for 24 h, and then the mRNA 
expression levels of （A） IL-6, （B） FGF-2, （C） TGF-㌼1, （D） PDGF, （E） IL-1㌼, （F） TNF- α , （G） CXCL12 
and （H） CCL2 were investigated by RT-qPCR. The mRNA expression levels in each sample were 
normalized to GAPDH, and the results are expressed as the fold change relative to the unstimulated 
control. Data are presented as the mean ± SD （n=5）. The values of *P < 0.05 was considered 
statistically significant.
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level of NGF in the cells significantly increased 
in a dose- and time-dependent manner 
following TGF-㌼1 stimulation. Twenty-four 
hours after stimulation with TGF-㌼1, NGF 
mRNA expression was significantly enhanced 

at concentrations above 10 ng/mL （Fig. 1A）. 
In addition, when stimulated with 10 ng/mL 
TGF-㌼1, its expression level continued to 
increase from 3 h after stimulation to at least 
24 h （Fig. 1B）. Therefore, these results 

Fig. 3. �Expression and production of IL-6 in MSCs stimulated with TGF-β1
UE7T-13 cells were stimulated with TGF- β 1 and then the mRNA expression levels and protein 
production of IL-6 were investigated. （A） UE7T-13 cells were stimulated with 10 ng/mL TGF-㌼1 in a 
time period between 1 to 24 h. The mRNA expression level of IL-6 was investigated by RT-qPCR. （B） 
UE7T-13 cells were stimulated with or without 10 ng/mL TGF-㌼1 for 72 h. The amount of secreted IL-6 
was measured using sandwich ELISA kits for human IL-6. The IL-6 protein concentration was measured 
according to the manufacturer’s instructions. （C） UE7T-13 cells were stimulated with 10 ng/mL TGF-㌼1 
supplemented with or without 10 µM each inhibitor described in "Materials and Methods". After 48 h of 
stimulation, the mRNA expression level of IL-6 was investigated by RT-qPCR. The mRNA expression 
levels in each sample were normalized to GAPDH, and the results are expressed as the fold change 
relative to the unstimulated control. Data are presented as the mean ± SD （n=5）. The values of *P < 
0.05 was considered statistically significant.
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suggest that TGF-㌼1 positively regulates NGF 
expression in human MSCs.

TGF-β1 increases IL-6 expression in human 
MSCs

Next, we investigated several cytokines, 
chemokines, and growth factors by RT-qPCR 
analysis and revealed that their mRNA 
expression levels in UE7T-13 cells were 
increased due to stimulation of the cells with 
various concentrations of TGF-㌼1. The mRNA 
expression levels of IL-6, FGF-2, and TGF-㌼1 
were enhanced due to the dose-dependent 
stimulation of the cells by TGF-㌼1 （Fig. 2A-
C）. In contrast, PDGF mRNA expression was 
suppressed by stimulation at concentrations of 
TGF-㌼1 above 20 ng/mL （Fig. 2D）. There 
was no significant difference with respect to 
the increase or decrease in the mRNA 
expression levels of the cytokines IL-1㌼ and 
TNF- α （Fig. 2E-F） and the chemokines 
CXCL12 and CC chemokine ligand 2 （CCL2） 

（Fig. 2G-H）.
In our previous study, we investigated the 

effect of pro-inflammatory cytokines such as 
IL-1㌼ and TNF- α on TGF-㌼1-induced NGF 
expression in fibroblasts 22）, thus in our 
current study we focused on IL-6 as an 
inflammatory cytokine. The mRNA expression 
level of IL-6 in UE7T-13 cells continued to 
increase until 24 h after TGF-㌼1 stimulation, 
but a biphasic relationship was observed in 
which the first peak was observed 1 h after 
stimulation （Fig. 3A）. In addition, we 
conducted ELISA to measure protein levels 
and observed that the amount of IL-6 protein 
secreted by UE7T-13 cells into the cell culture 
conditioned medium was significantly enhanced 
by TGF-㌼ 1 treatment （Fig. 3B）. TGF-㌼
1-induced expression of IL-6 was attenuated by 
both the TGF-㌼ type I receptor inhibitor SB-

431542 and the MEK inhibitor U0126 （Fig. 
3C）. However, it was not suppressed by the 
administration of SIS3, a specific inhibitor of 
Smad3, a major molecule in the TGF-㌼ 
signaling pathway, and the p38 MAPK 
inhibitor SB203580. Interestingly, treatment 
with the JNK inhibitor SP600125 enhanced 
TGF-㌼1-induced IL-6 expression in UE7T-13 
cells. These results indicate that TGF-㌼ 1 
increases IL-6 expression via the MEK 
pathway in human MSCs. In contrast , 
treatment with recombinant IL-6/sIL-6R was 
not involved in TGF-㌼1-induced NGF mRNA 
expression in UE7T-13 cells （Fig. 4）.

Fig. 4. �Involvement of IL-6 for TGF- β1-induced 
NGF expression in MSCs
UE7T-13 cells were stimulated with or 
without 10 ng/mL TGF-㌼ 1, 50 ng/mL 
r e c o m b i n a n t  I L - 6  a n d  5 0  n g / m L 
recombinant sIL-6R （IL-6/sIL-6R） for 24 h. 
The mRNA expression level of NGF was 
investigated by RT-qPCR. The mRNA 
expression levels in each sample were 
normalized to GAPDH, and the results are 
expressed as the fold change relative to the 
unstimulated control. Data are presented as 
the mean ± SD （n=5）. The values of *P < 
0.05 was considered statistically significant.
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and extend long neurites, providing a useful 
model for the investigation of neuronal 
differentiation 27）. Neurite extension in PC12 
cells was promoted by stimulation with 
recombinant NGF,  which was further 
enhanced by co-stimulation with recombinant 
IL-6 and sIL-6R （Fig. 5A-B）. In addition, 

IL-6 enhances NGF-dependent  neuri te 
extension in PC12 cells

As described above, TGF-㌼1 increased the 
expression levels of both NGF and IL-6 in 
MSCs, and we investigated its effect on neurite 
extension in PC12 cells. NGF-responsive PC12 
cells differentiate into sympathetic-like neurons 

Fig. 5. �Effect of IL-6 on NGF-induced neurite extension in PC12 cells
PC12 cells were stimulated with or without 20 ng/mL recombinant NGF, 50 ng/mL recombinant IL-6 and 
50 ng/mL recombinant sIL-6R （IL-6/sIL-6R） for 24 h. The status of neurite extensions emerging from 
PC12 cells was observed according to described in "Materials and Methods". （A） The ratio of the 
number of neurite extension cells to the total number of PC12 cells in the field of microscopy was 
statistically analyzed. Data are presented as the mean ± SD （n=5）. The values of *P < 0.05 was 
considered statistically significant. （B, C） The neurite extensions emerging from PC12 cells were 
observed under the phase-contrast （B） and fluorescent （C） field of the microscope.

Fig. 6. �Effect of TGF-β1 for NGF and IL-6 expression levels in PC12 cells
PC12 cells were stimulated with 10 ng/mL TGF-㌼1 for 48 h, and then the mRNA expression levels of 

（A） NGF and （B） IL-6 were investigated by RT-qPCR using rat-specific oligonucleotide primers. The 
mRNA expression levels in each sample were normalized to GAPDH, and the results are expressed as 
the fold change relative to the unstimulated control. Data are presented as the mean ± SD （n=5）. The 
values of *P < 0.05 was considered statistically significant.
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treatment with IL-6/sIL-6R alone did not 
promote neurite extension in PC12 cells. 
Furthermore, NGF and IL-6 mRNA expression 
levels in PC12 cells were not significantly 
affected by TGF-㌼1 stimulation （Fig. 6A-B）.

NGF and IL-6 secreted by MSCs as soluble 
molecules accumulate in the culture medium. 
Therefore, we cultured PC12 cells in the 
conditioned medium of TGF-㌼1-treated UE7T-
13 cel ls and then investigated neurite 
extension. As a result, neurite extension in 
PC12 cells cultured in the conditioned medium 

of TGF-㌼ 1-pretreated UE7T-13 cells was 
significantly enhanced by the addition of sIL-
6R, and this enhancement was abrogated by 
the addition of the sIL-6R neutralizing antibody 

（Fig. 7A）. For the same purpose, UE7T-13 
cells and PC12 cells were co-cultured under 
indirect transwell conditions. The neurite 
extension in PC12 cells was significantly 
enhanced by the co-culture of UE7T-13 cells 
pretreated with TGF-㌼1 and the addition of 
sIL-6R, and this enhancement was abrogated 
by the addition of the sIL-6R neutralizing 

Fig. 7. �Enhancement of neurite extension in PC12 cells by IL-6 secreted from MSCs
The status of neurite extensions emerging from PC12 cells was observed according to described in 
"Materials and Methods". （A） UE7T-13 cells were stimulated with 20 ng/mL TGF-㌼1 for 72 h and the 
conditioned medium （CM） was recovered. The CM supplemented with or without 50 ng/mL 
recombinant sIL-6R and/or 2 µg/mL of sIL-6R neutralizing antibody （nAb） was replaced as a culture 
medium for PC12 cells. The neurite extension of PC12 cells cultured in the conditioned medium for TGF-
㌼1-stimulated UE7T-13 cells at 72 h was evaluated. （B） UE7T-13 cells and PC12 cells were cultured in 
an indirect co-culture system. UE7T-13 cells were seeded on the upper membrane of the transwell 
chamber. The UE7T-13 cells in upper side were stimulated with or without 20 ng/mL of TGF-㌼1, and 
then 25 ng/mL of sIL-6R and/or 4 µg/mL of sIL-6R neutralizing antibody （nAb） were added to the 
lower side. After 72 h of culture period, neurite extension of PC12 cells on the lower side was evaluated. 
The ratio of the number of neurite extension cells to the total number of PC12 cells in the field of 
microscopy was statistically analyzed. Data are presented as the mean ± SD （n=5）. The values of *P < 
0.05 was considered statistically significant.
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antibody （Fig. 7B）. Taken together, these 
results strongly suggest that NGF secreted by 
TGF-㌼1-stimulated MSCs induces neuronal 
differentiation in PC12 cells, which is further 
enhanced by the IL-6 secreted from the MSCs.

Discussion

The immunomodulatory effects of MSCs are 
synergistically mediated by cell contact-
dependent mechanisms and the secretion of 
soluble factors. The functional effects of 
monocytes/macrophages, dendritic cells, T 
cells, B cells, and natural killer cells determine 
the immunomodulatory potential of MSCs. In 
this study, it was shown that the expression of 
both IL-6, an immunomodulatory cytokine, and 
NGF was enhanced in TGF-㌼ 1-stimulated 
MSCs. In addition, it was strongly suggested 
that the NGF secreted by TGF-㌼1-stimulated 
MSCs induces neuronal differentiation in PC12 
cells, which is further enhanced by IL-6 also 
secreted by the MSCs.

TGF-㌼ 1 downregulates various immune 
responses as an immunosuppressive molecule 
and is associated with immune diseases 13）. It 
is also known to induce NGF expression in 
various cell types 18） , 19）. TGF-㌼1-induced NGF 
expression is promoted in chondrocytes by 
Smad2/3-dependent signaling 20）, and in dental 
pulp cells by the activation of the JNK and p38 
MAPK signaling pathways 21）. In addition, our 
recent study demonstrated that TGF-㌼ 1 
induced NGF expression in periodontal 
ligament-derived fibroblasts via the Smad2/3 
signaling pathway and p38 MAPK activation 22）. 
In the present study, we demonstrated that 
TGF-㌼1 induces NGF expression in human 
MSCs, although the signaling pathway is 
unknown （Fig. 1）. Moreover, stimulation of 
the MSCs by TGF-㌼1 enhanced NGF and IL-6 
expression in them （Fig. 1, Fig. 2A, Fig. 3A-

B）. This enhancement of IL-6 expression was 
shown to be mediated by the TGF-㌼ type I 
receptor/MEK/ERK signaling pathway （Fig. 
3C）, and was not suppressed by Smad2/3 
inhibitors. Binding of TGF-㌼1 to receptors on 
the cell surface triggers the formation of a 
tetrameric complex of type I and II receptors. 
Type II receptor kinase activates type I 
receptor kinase, which transduces the signal 
through the phosphorylation of receptor-
activated Smads （R-Smads） 28）, 29）, 30）, 31）. Smad 
proteins are central mediators of the TGF-㌼ 
superfamily signaling. R-Smads, which include 
Smad1, Smad5 and Smad8 and are primarily 
activated by bone morphogenetic protein 

（BMP）-specific type I receptors, whereas 
Smad2 and Smad3 are activated by TGF-㌼
-specific type I receptors. Activated R-Smads 
form complexes with the common mediator 
Smads （Co-Smads e.g. ,  Smad4）, which 
translocate into the nucleus, where they 
regulate the transcription of specific target 
genes along with their partner proteins. 
Abnormal intensity of Smad-mediated TGF-㌼/
BMP signaling is associated with various 
diseases, including bone and immune disorders, 
fibrosis, and tumor progression or metastasis 32）. 
TGF-㌼  also activates intracellular effectors 
such as MAPKs 33） 34）. There are at least three 
distinct groups of MAPKs: MEK/ERKs, JNKs 
and p38 MAPKs. Notably, TGF-㌼1-induced 
intracellular signals affect the differentiation of 
MSCs 26）, 35）, 36）, 37）, 38）.

The rat pheochromocytoma PC12 cell line 
has been established and used as a model for 
the growth and differentiation of neural crest 
ce l l s  27）.  NGF- respons ive  PC12  ce l l s 
differentiate into sympathetic-like neurons and 
from long neurites, thereby providing a useful 
model for the investigation of neuronal 
differentiation. In this study, neurite extension 
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in PC12 cells cultured in TGF-㌼1 pretreated-
MSCs conditioned medium was significantly 
enhanced by the addition of sIL-6R （Fig. 7A）. 
Similarly, neurite extension in PC12 cells 
grown in a co-culture with MSCs was also 
signif icantly enhanced under transwell 
conditions with TGF-㌼ 1 pretreated-MSCs 
supplemented with sIL-6R （Fig. 7B）. The 
enhancement of neurite extension was 
abolished by the addition of the sIL-6R 
neutralizing antibody. IL-6 is a pleiotropic 
cytokine that regulates the immune and 
inflammatory responses 39）, 40）. Although IL-6 
has been reported to be a principal regulator 
of acute phase proteins 41）, other cytokines, 
such as IL-1㌼ and TNF- α also participate in 
the induction of a broad subset of acute phase 
proteins 41） 42）. Previously, we reported that the 
expression levels of inflammation-related 
chemok i ne  CCL2  were  enhanced  by 
stimulation with IL-6, IL-1㌼ and TNF- α in 
gingival- or periodontal ligament-derived 
f ibrob lasts  43） 44）.  Interest ing ly ,  CCL2 
specifically induced the migration of MSCs but 
not that of fibroblasts, suggesting that CCL2 
specifically recruits MSCs to the inflammatory 
site but not normal fibroblasts in the damaged 
tissue. IL-6 function is dependent on how its 
signal is transmitted to target cells. It acts via 
its classical signaling pathway by binding to its 
membrane-bound IL-6R, which then dimerizes 
with glycoprotein 130 （gp130） 40）. This event 
triggers the activation of Janus kinases （JAK） 
which phosphorylate distinct intracellular 
tyrosine residues of gp130. These residues 
serve as docking sites and activate downstream 
pathways, at least two distinct signaling, 
namely the signal transducer and activator of 
transcription （STAT）-3 and MAPKs 45）. In 
addition, IL-6 can act via its sIL-6R such as the 
soluble form of IL-6R coupled with gp130 

protein to act on non-IL-6R expressing target 
cells 46）. This is referred to as the trans-
signaling pathway. It has been suggested that 
IL-6 trans-signaling is pro-inflammatory. 
Besides its physiological and pathophysiological 
effects on immune system regulation, IL-6 
impacts neural development via the activation 
of the JAK/STAT and MAPK pathways 
activation. It contributes to adult neurogenesis 
and induces the differentiation of neural 
progenitor cel ls derived from induced 
pluripotent stem cells 47）, 48）, 49）. Mice lacking 
IL-6 showed decreased neural progenitor 
maturation in neurogenic brain regions such 
as the hippocampal dentate gyrus compared to 
that in their wi ld-type l i ttermates  50）. 
Additionally, IL-6 signaling induced neurite 
extension in PC12 cells 51）, 52）, 53）, 54）, 55）. The 
protein is also associated with a various 
neuropathologies 56）. Recently, Bongartz et al. 
showed that IL-6 signaling induced the mRNA 
expression of proto-oncogene c-Fos and early 
growth response protein 1 （Egr1） in PC12 
cells 57）. c-Fos and Egr1 are immediate early 
genes and their expression is essential for 
phys io l og ica l  bra in  deve lopment  and 
plasticity 58）. Blocking the expression or 
function of either of these proteins impairs 
NGF-induced neurite extension in PC12 
cells 59）, 60）. In the present study, our findings 
strongly suggest that NGF secreted from 
TGF-㌼1-stimulated MSCs induces the neuronal 
differentiation of PC12 cells, which is further 
enhanced by IL-6 secreted from MSCs. 
However ,  the  mo lecu lar  mechan i sms 
underlying IL-6-induced neural differentiation 
and neurite extension remain unclear.

In conclusion, TGF-㌼1 has been shown to 
induce NGF and IL-6 expression in MSCs, and 
this NGF induces neurite extension in PC12 
cells. Importantly, this neurite extension was 
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enhanced in the presence of IL-6, which is also 
secreted by the MSCs. Therefore, in a 
microenvironment where MSCs are exposed 
to TGF-㌼ 1 ,  the induct ion o f  neurona l 
differentiation and subsequent growth are 
expected.
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