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Abstract: New injection-type bone-forming materials are desired in dental implantology. In this study,
we added nano-hydroxyapatite (nHAp) and bone morphogenetic protein (BMP) to cross-linkable
thiol-modified hyaluronic acid (tHyA) and evaluated its usefulness as an osteoinductive injectable
material using an animal model. The sol (ux-tHyA) was changed to a gel (x-tHyA) by mixing with a
cross-linker. We prepared two sol–gel (SG) material series, that is, x-tHyA + BMP with and without
nHAp (SG I) and x-tHyA + nHAp with and without BMP (SG II). SG I materials in the sol stage
were injected into the cranial subcutaneous connective tissues of mice, followed by in vivo gelation,
while SG II materials gelled in Teflon rings were surgically placed directly on the cranial bones of rats.
The animals were sacrificed 8 weeks after implantation, followed by X-ray analysis and histological
examination. The results revealed that bone formation occurred at a high rate (>70%), mainly as
ectopic bone in the SG I tests in mouse cranial connective tissues, and largely as bone augmentation in
rat cranial bones in the SG II experiments when x-tHyA contained both nHAp and BMP. The prepared
x-tHyA + nHAp + BMP SG material can be used as an injection-type osteoinductive bone-forming
material. Sub-periosteum injection was expected.

Keywords: cross-linked hyaluronic acid; nano hydroxyapatite; bone morphogenetic protein; injection-
type bone forming material; ectopic bone formation; bone augmentation

1. Introduction

In dental implantology, bone formation is often desired in patients whose implants
cannot be firmly placed due to shallow and narrow jaw bones [1]. Sinus lift or socket lift
with autogenous bones and/or alloplasts (granules) is often performed to enlarge the areas
of the bone that receive implants [2]. Treatment with an alloplast without bone collection is
preferred as a remedy for patients [3]. Incisions and sutures are inevitable when placing
granules of beta-tricalcium phosphate [4] and apatite [5,6]. However, alloplastic granules
often spill out of implanted areas [7], causing infection problems. Therefore, the use of less
invasive injection-type bone forming materials without suturing is expected [8].

In dental implantology, injection-type bone substitute materials are rarely used. Mean-
while, in orthopedic surgery, self-setting apatite-based bone cement has been used to
treat vertebral compression fractures [9]. Hydrogels—such as polyethylene glycol [10],
chitosan [11], alginate [12], hyaluronic acid (HyA) [13–15], and gelatin [16,17]—which
are often coupled with calcium phosphate (i.e., apatite or tricalcium phosphate) [18] and
growth factors, such as bone morphogenetic protein (BMP) [19], have been studied as
injectable bone forming materials. However, most have not been used routinely in dental
practice. New injectable biomaterial systems are expected to be developed in implantology.
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HyA is a natural polysaccharide composed of D-glucuronic acid and N-acetylglucosa-
mine [20] and is a component of the extracellular matrix of most connective tissues that
exhibit excellent biocompatibility when applied to the human body [21]. Depending on the
processing method, HyA materials can be prepared in the form of sponges, hydrogels, or
injectable gels [20]. In cosmetics, HyA is often used to eliminate nasolabial folds [22]. HyA
is also used for joint fluid supplementation [23], eye operation [24], wound recovery [25],
and soft tissue restoration [26].

Due to its chemical structure, HyA is a hydrophilic polymer and can be character-
ized by a fast degradation rate (e.g., for 3–5 days) [20]. HyA-based materials have been
intensively assessed for biomedical applications due to their excellent biocompatibility,
biodegradability, and chemical modification [20]. HyA requires a chemical cross-link for
more than a month in vivo [20,27]. HyA can be cross-linked by chemical modification
and the use of an appropriate cross-linker, while HyA has been chemically modified with
hydrazide [28], amino or aldehyde functional groups [29], and methacrylate groups [30] to
form stable cross-link networks [20,27]. Another important approach is the thiol modifica-
tion of the side chains of HyA (Figure 1a) and cross-linking by a di-functional cross-linker
(Figure 1b) [31,32]. Hystem®—a cross-linkable thiol-modified hyaluronic acid (tHyA)—was
developed in the USA for biomedical research, and is claimed to be capable of transplanting
cells and/or slowly releasing growth factors [33–37]. This material has been followed by
several rival clinical products, such as Restylane Lyft® [33,38], and has not been thoroughly
examined as an injection-type bone-forming material [39].
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cross-linker.

HyA is not osteoconductive, while BMP is a strong bone-forming growth factor [40].
Adding a growth factor and its carriers can render HyA-based materials osteoinductive
and osteoconductive [39,40]. Nano-hydroxyapatite (nHAp) has been reported to be an
osteoconductive, bio-absorbable, and carrier material, while larger hydroxyapatite blocks
and granules are more inert, less bio-absorbable, and less protein adsorbed [41]. BMP
can be bound to and slowly released from nHAp, sustaining long-term bone-forming
activity [40,42]. We previously reported that injected x-tHyA + nHAp + BMP sol–gel (SG)
successfully caused ectopic bone formation in the back subcutaneous and thigh muscles of
mice by endochondral ossification [39]. As a next step, we believed that it was necessary
for clinical application to check the bone-forming capability of x-tHyA + nHAp + BMP SG
in the cranial osseous area of living animals.

The materials considered for bone augmentation—namely, bone grafts and substitute
materials—have wide variations in the type and use method. Briefly, these materials can
be classified into naturally derived materials (autografts, allografts, and xenografts), syn-
thetic materials (hydroxyapatite, beta-tricalcium phosphate, calcium phosphate, bioactive
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glasses [43,44], metals, and polymers), composite materials (e.g., HyA/nHAp), growth
factor-based materials, and materials with infused living osteogenic cells. Xenografts con-
tain bovine bone, collagen, HyA, and silk [45]. Materials can also be classified based on
several attributes. According to the source, they can be classified into two groups: biological
(e.g., HyA) or non-biological. By chemical composition, they are metals and alloys, ceram-
ics, or polymers (e.g., natural polymers, such as collagen and HyA, and synthetic polymers,
such as polyetherether-ketone, polyethylene glycol, polylactide, and polycaprolactone).
Due to their material consistency, they are three-dimensional (3D) printable, implantable
solids, injectable (e.g., HyA), or adhesive. Additives may contain stem cells and bioactive
agents (e.g., BMP). They may be composed of nanografts in the form of nanosized tubes,
fibers, sheets, crystals, and cages [46]. The base material studied (x-tHyA) is an injectable
natural-origin polymeric SG material.

First, we characterized un-cross-linked and cross-linked thiol-modified HyA (ux-tHyA
and x-tHyA, respectively) by Fourier transform infrared spectroscopy (FTIR), scanning
electron microscopy (SEM), hyaluronidase dissolution tests, and thermogravimetry (TG)
coupled with differential scanning calorimetry (DSC). We performed two experiments to
investigate the use of nHAp. We observed direct binding between nHAp and protein using
confocal laser scanning microscopy and performed protein release tests in saline solution
from a mixed gel of x-tHyA and nHAp.

Second, the main purpose of this investigation was to prepare an injection-type bone-
forming material using x-tHyA, nHAp, and BMP and examine its usefulness in animal
experiments. We examined the bone-forming ability of x-tHyA + nHAp + BMP (i) using
x-tHyA + BMP with and without nHAp (SG I series) in mouse cranial subcutaneous
connective tissues, and (ii) employing x-tHyA + nHAp with and without BMP (SG II series)
on rat cranial bones by X-ray approaches and histological observations. The final objective
of this study was the rapid development of a novel injectable bone-forming material system
using existing HyA material (x-tHyA), nHAp, and BMP and to search for information on
the technology and supporting materials necessary to realize this original purpose. The
novelty of this study lies in the open publication of the bone-forming capability by the
combined use of nHAp and BMP in x-tHyA, which could lead to its future direct-wide
therapeutic use in dentistry and medicine. In particular, we have examined the usefulness
of nHAp in biomedical applications [47,48]. The final intended use of the investigated
materials is its direct subperiosteal injection to achieve alveolar bone augmentation for
dental implant placement and insertion of denture.

2. Materials and Methods
2.1. Material

A commercial cross-linkable hyaluronic acid kit (Hystem® Kit, 12.5 mL, Part Num-
ber GS1004, Sigma-Aldrich, St. Louis, MO, USA) consisting of hyaluronic acid possess-
ing –SH functional groups (Glycosil®) (Catalog Number GS220, ESI BIO, Alameda, CA,
USA), thiol-reactive polyethylene glycol diacrylate (PEGDA) cross-linker (Extralink Lite®,
Catalog Number GS3008, ESI BIO), and degassed (DG) water (Calatog Number GS241,
ESI BIO) (Figure 2). Other drugs and materials used were commercial recombinant hu-
man/mouse/rat (CHO cell-derived) bone morphogenetic protein-2 (BMP) (R&D Systems,
Catalog Number 355-BM, Minneapolis, MN, USA), nHAp with a mean diameter of 40 nm
(nano-SHAp, SofSera, Tokyo, Japan), and a microorganism-derived HyA (HYALURON-
SAN HA-SHY, average molecular weight = 1,500,000–3,900,000, Kewpie Co., Tokyo, Japan)
(HyA control). The nHAp particles were autoclaved before mixing.
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2.2. Material Constitution and Experimental Design

Gycosil® was re-constituted with DG water to form an uncross-linked sol (ux-tHyA).
The Hystem® hydrogel (x-tHyA) was prepared by adding the cross-linker PEGDA (Ex-
tralink Lite®) with DG water to the ux-tHyA sol, following the manufacturer’s instructions.
Tables 1 and 2 show the material composition and experimental design of this study, respec-
tively. The raw x-tHyA material used was Gycosil® (sponge) (tHyA). The addition of water
to Gycosil® produced sol (ux-tHyA). The addition of a cross-linker to ux-tHyA created
x-tHyA. x-tHyA was both sol and gel, depending on the timing of cross-linker mixing
completion. Before and after 20 min of mixing, x-tHyA was a sol and a gel, respectively.
Therefore, x-tHyA is called a SG material. During the sol stage, it can be injected and
gelled in vivo over time (Table 1). In this study, three types of experiments were carried
out: (a) material characterization of HyA; (b) characterization of the use of nHAp; and
(c) animal experiments using x-tHyA (Table 2).

Table 1. Materials explanation.

Materials Material Constituent State

HyA control HYALURONSAN HA-SHY Powder

tHyA Glycosil® Sponge body

ux-tHyA Glycosil® + DG water Sol

At this time, BMP, and nHAp were added to ux-tHyA

x-tHyA Glycosil® + DG water + Extralink Lite® Sol (up to 20 min)
Gel (after 20 min)

Dried HyA control Freeze-dried (HyA control + water) Sponge body

Dried ux-tHyA Freeze-dried ux-tHyA Sponge body

Dried x-tHyA Freeze-dried x-tHyA Sponge body

Table 2. Design of materials and experiments.

(a)

Dried Samples
Material Characterization of HyA

FTIR SEM Hyaluronidase
Dissolution Tests TG/DSC

HyA control • • • •
ux-tHyA • • • •
x-tHyA • • • •
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Table 2. Cont.

(b)

Samples
Characterization of the Use of nHAp

Observation of
Protein Binding

Accelerated Protein
Release Tests

nHAp*FITC-Collagen (±) •
x-tHyA SG*nHAp (±) •

(c)

Samples
Animal Experiments

Direct Injection
into Cranial Area

Set in a Teflon Ring and Placed
on Cranial Bone

SG I*nHAp (±) •
SG II*BMP (±) •

Note: sol–gel (SG). • means the experiment conducted. * means “and”.

2.3. Material Characterization of Control HyA, ux-tHyA, and x-tHyA

For material studies, the HyA control was dissolved in distilled water at 0.25 wt%
concentration. Samples of HyA control sol, ux-tHyA sol, and x-tHyA gel were frozen at
−80 ◦C and freeze-dried for 12 h. To differentiate the chemical and physical properties of
the three HyA materials, four in vitro experiments were performed using dried samples.

2.3.1. FTIR

FTIR equipped with an attenuated total reflectance attachment (Nicolet6700, Thermo
Fisher Scientific, Waltham, MA, USA) (using a single reflection diamond, a refractive index
of 2.38 at 1000 cm−1 and angle of incidence of 45◦) was used to characterize the chemical
structures of the dried HyA control, ux-tHyA, x-tHyA, and cross-linker PEGDA. During
the measurement, the resolution was 4 cm−1, the wavenumber range was 4000–400 cm−1,
and the number of scans was 10. The OMNIC software (Thermo Fisher Scientific, Waltham,
MA, USA) was used to collect and process the IR spectra. For all recorded FT-IR spectra,
corrections for noise from the diamond attachment and CO2 were performed manually.

2.3.2. SEM

SEM (SU8010, Hitachi High-Tech Corp., Tokyo, Japan) was used at 15 kV to morpho-
logically compare dried HyA control, ux-tHyA, and x-tHyA. The dried HyA samples were
glued to carbon tape, placed on an aluminum stub and plasma coated with OsO4 using an
OPC60A (Filgen, Nagoya, Japan). The thickness of OsO4 was 30 nm.

2.3.3. Hyaluronidase Dissolution Tests

In the hyaluronidase dissolution tests, each sample (1.0 mg) (n = 6) of dried HyA
control, ux-tHyA, and x-tHyA samples were dissolved in 0.01 wt% hyaluronidase solution
(Code 18240-36, Nacalai Tesque, Kyoto, Japan) diluted in distilled water (0.5 mL) in a
1.5 mL microtube, and had been placed in a constant temperature bath, and kept at 37 ◦C.
The dissolution condition was visually inspected every 6 h, and the time to complete
disappearance (min) was recorded.

2.3.4. TG/DSC Thermal Analyses

TG/DSC was performed on each 1 mg sample (dried HyA control, ux-tHyA, and
x-tHyA) (n = 1), using specialized equipment (STA409C, Netzsch, Selk, Germany) so that
the thermal stability of x-tHyA could be scaled with reference to those of HyA control
and ux-tHyA. The experimental conditions for TG/DSC were as follows: atmospheric
gas, nitrogen; gas flow rate (sample), 50 mL/min; gas flow rate (reference), 20 mL/min;
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temperature range, 20 ◦C to 550 ◦C; heating rate, 10 ◦C/min; sample holder, open aluminum
crucible; reference, alumina (6.8 mg); TG resolution, 5 µg; and DSC resolution, <1 µW.

2.4. Characterization of the Use of nHAp
2.4.1. Observation of Binding between nHAp and Protein

Fluorescein isothiocyanate (FITC)-labeled bovine type I collagen (1 mg/mL) (#4001,
Chondrex, Inc., Redmond, WA, USA) (0.5 mL) was mixed with nHAp (0.6 mg) containing
PBS (−) x2 buffered solution (0.5 mL) in a 1.5 mL microtube and held at 4 ◦C for 12 h
(nHAp*FITC-Collagen (+)). The same solution containing nHAp particles was prepared
by mixing 0.01 M acetic solution (0.5 mL) and PBS (−) ×2 buffered solution (0.5 mL)
without FITC-labeled collagen (nHAp*FITC-Collagen (−)). Both solutions with nHAp
were centrifuged at 56× g (rotation radius = 50 mm, rotation speed = 1000 rpm) for
1 min. The supernatants were discarded, and the bottom pellets were resuspended in
PBS (−) solution (300 µL). The solutions were then transferred to glass dishes (25 mm in
diameter), stood still for 1 h, and the powders on the bottoms of the two glasses were
observed with a confocal laser scanning microscope (A1RHD25, Nikon Co., Tokyo, Japan).
The measurement conditions were an excitation wavelength of 488 nm and an emission
wavelength of 500–550 nm.

2.4.2. Accelerated Protein Release Tests from x-tHyA Containing nHAp

For accelerated protein release tests of x-tHyA with nHAp in an aqueous environment,
x-tHyA sol (6.25 mL) was produced using Gycosil® (50 mg), DG water (4 mL), bovine
serum albumin standard (BSA) (2 mg/mL) (1 mL) (Thermo Scientific, Rockford, IL, USA),
and PEGDA cross-linker (1.25 mL) with nHAp powder (10 mg) (x-tHyA*nHAp (+)), and
each sol was poured into four 1.5 mL microtubes, followed by gelation. Sols without nHAp
were prepared in the same proportion and separated into four tubes (x-tHyA*nHAp (−)).
Phosphate buffered saline solution (−) at a volume of 1 mL made from PBS tablets (#T900,
Takara Bio, Kusatsu, Shiga, Japan) was added to gel samples in tubes after gelation, which
had been stored at 37 ◦C in a constant temperature bath and the solution was collected 1,
3, 5, and 7 days after gelation and stored at −20 ◦C until measurements while new saline
solutions (1 mL) were added to gels 1, 3, and 5 days later. The quantities of BSA eluted in
solution were measured using a Pierce BCA protein assay kit (Thermo Scientific, Rockford,
IL, USA) with four samples with two repetition measurements (n = 4 × 2) so that the
protein release kinetics of x-tHyA and the protein binding/releasing trend of nHAp in
x-tHyA could be visualized in a time-dependent manner.

2.5. Preparation of SG I and SG II Materials

Material preparation was performed aseptically on a clean bench.

2.5.1. SG I Sample

The preparation protocol for the SG I samples (x-tHyA + BMP ± nHAp) was as follows.
First, BMP (50 µg) was re-constituted with a 4 mM HCl solution (0.25 mL in total) with
0.5 wt% bovine fetal albumin standard (fraction V) (Production no. DK59769, Thermo
Scientific Pierce, Waltham, MA, USA) as adjuvant and diluted in DG water (5 mL in total).
Second, freeze-dried Glycosil® (50 mg) was re-constituted in the sol state with DG water
and BMP (5 mL) on a vibrating mixer (Mild Mixer PR-12, Tokyo, Japan) for 12 h at 20 ◦C
(Liquid A). The Extralink Lite® was diluted with DG water (1.25 mL) (Liquid B). Third,
Liquid B was mixed with Liquid A to obtain a viscous solution (Figure 3a). Membrane
filtration (0.22 µm) was used for sterilization. Half of the sol was manually mixed with
nHAp (50 µg) with a plastic spatula in a 35 mm culture dish (test samples; SG I*nHAp
(+) = x-tHyA + BMP + nHAp), while the other half was unmixed (control samples; SG
I*nHAp (−) = x-tHyA + BMP). Both SGs were injected with a needle and syringe (Figure 3b),
followed by gelation for approximately 20 min at 37 ◦C. The injection volume of the SG I
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samples was set at 200 µL in the sol stage. The BMP content of each injected SG I*nHAp (+)
was 1.6 µg.
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Figure 3. (a) SG I*nHAp (−) = x-tHyA + BMP in sol stage; (b) SG I*nHAp (+) = x-tHyA + BMP + nHAp
in sol stage in a syringe.

2.5.2. SG II Sample

In the case of the SG II samples (tHyA + nHAp ± BMP), a mixture of ux-tHyA and nHAp
was first prepared, followed by the addition of a BMP-containing HCL solution and a cross-
linker solution to form the test samples (SG II*BMP (+) = x-tHyA + nHAp + BMP)—using
mixing proportions of x-tHyA, nHAp, and BMP—similar to those of SG I samples. Control
samples (SGII*BMP (−) = x-tHyA + nHAp) were also produced using the HCL solution
without BMP. Before animal studies, test and control SG II in sol stage (50 µL each) were
poured into a Teflon ring (inner hole diameter = 4 mm, outer hole diameter = 6 mm, and
thickness = 2 mm) placed on a glass slide and set at 20 ◦C. The amount of BMP in each SG
II*BMP (+) gel sample was 0.4 µg.

2.6. Animal Experiments

The study protocol was approved by the Ethics Committee on Animal Research of
Iwate Medical University (#30-001).

2.6.1. SG I Sample

Twenty 10-week-old male BALB/cAJcl mice (CLEA Japan) were used. Groups of
two to three mice were housed in separate cages and provided with a standard diet and
water ad libitum. Before injection, the skull hairs of the mice were removed mainly using
an electric shaver. Under anesthesia with a mixture of isoflurane (3 vol%) and oxygen
(0.5 L/min) gas generated by a carburetor (IV-ANE; Olympus, Tokyo, Japan), the test and
control SG I samples were injected in sol stages (0.2 mL) (SG I*nHAp (+) and SG I*nHAp
(−), respectively) into the cranial subcutaneous tissue of mice (Figure 4), respectively
(n = 10 each) with the use of a 24-gauge needle, and fed for a duration of 8 weeks. The
animals were sacrificed by CO2 inhalation.



Polymers 2022, 14, 5368 8 of 26Polymers 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

 
Figure 4. Subcutaneous injection of SG I*nHAp (+) = x-tHyA + BMP + nHAp sample in sol stage into 
the mouse cranial area. 

2.6.2. SG II Sample 
Four male Wistar rats weighing 340 ± 16 g (mean ± SD) were used. All rats were 

housed in separate cages (two rats per cage) with a standard diet and water ad libitum. 
Under anesthesia with a mixture of isoflurane and oxygen, the centers of the rat calvariae 
were shaved and sterilized with 10% povidone iodine, followed by a local injection of 
anesthetic (0.2 mL, 2% lidocaine with 1:80,000 epinephrine). Then, the periosteum flaps 
were elevated and the cranial bone was exposed with a scalpel and bone forceps. Two rats 
were used for test and control SG II gels, respectively. Three tests and control SG II gels 
(SG II*BMP (+) and SG II*BMP (−), respectively) in Teflon rings (Figure 5a) were placed 
directly on the cranial bones of a rat (Figure 5b) and tightly closed with soft nylon 
(Softretch 4-0; GC, Tokyo, Japan). Most of the periosteum was detached from the cranial 
bone during the operation. Eight weeks after surgery, all rats were sacrificed by CO2 in-
halation. 

 
Figure 5. (a) Prepared SG II*BMP (+) = x-tHyA + nHAp + BMP samples gelled in Teflon rings; and 
(b) implantation of SG II*BMP (+) samples on exposed rat cranial bone. 

2.6.3. X-Ray Analyses 
We evaluated new bone formation by SG I samples in the cranial subcutaneous tis-

sues of mice using a 3D microcomputed tomography (micro-CT) system (eXplore Locus; 
GE Healthcare, Wilmington, MA, USA). The ossification trends in the operation areas of 
the cranial bones of rats using SG II samples were evaluated using a soft X-ray apparatus 
(M60, Softex, Tokyo, Japan). 

Figure 4. Subcutaneous injection of SG I*nHAp (+) = x-tHyA + BMP + nHAp sample in sol stage into
the mouse cranial area.

2.6.2. SG II Sample

Four male Wistar rats weighing 340 ± 16 g (mean ± SD) were used. All rats were
housed in separate cages (two rats per cage) with a standard diet and water ad libitum.
Under anesthesia with a mixture of isoflurane and oxygen, the centers of the rat calvariae
were shaved and sterilized with 10% povidone iodine, followed by a local injection of
anesthetic (0.2 mL, 2% lidocaine with 1:80,000 epinephrine). Then, the periosteum flaps
were elevated and the cranial bone was exposed with a scalpel and bone forceps. Two rats
were used for test and control SG II gels, respectively. Three tests and control SG II gels (SG
II*BMP (+) and SG II*BMP (−), respectively) in Teflon rings (Figure 5a) were placed directly
on the cranial bones of a rat (Figure 5b) and tightly closed with soft nylon (Softretch 4-0;
GC, Tokyo, Japan). Most of the periosteum was detached from the cranial bone during the
operation. Eight weeks after surgery, all rats were sacrificed by CO2 inhalation.
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(b) implantation of SG II*BMP (+) samples on exposed rat cranial bone.

2.6.3. X-ray Analyses

We evaluated new bone formation by SG I samples in the cranial subcutaneous tissues
of mice using a 3D microcomputed tomography (micro-CT) system (eXplore Locus; GE
Healthcare, Wilmington, MA, USA). The ossification trends in the operation areas of the
cranial bones of rats using SG II samples were evaluated using a soft X-ray apparatus (M60,
Softex, Tokyo, Japan).
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2.6.4. Histological Observations

Skulls or cranial skins of rats used for SG I and SG II samples were collected after
feeding for 8 weeks with a diamond saw (MC-201 Microcutter; Maruto, Tokyo, Japan) or
scissors, fixed in 10% neutral buffered formaldehyde equivalent (Mildform, Wako Chemical,
Osaka, Japan) for 4 weeks at 4 ◦C, and decalcified in 0.5 wt% ethylene diamine tetra-acetate
solution (Decalcifying solution B, Wako Chemical, Osaka, Japan) for 4 weeks at 4 ◦C.
The cranial regions were cut from the skulls, treated with graded alcohol and xylene,
and embedded in wax. The wax specimens were then cut into five µm sections using a
microtome (IVS-410, Sakura Finetek, Tokyo, Japan). The sections of the slides were stained
with hematoxylin and eosin (HE), followed by histological observations using fluorescence
microscopy (All-in-one BZ-9000; Keyence, Osaka, Japan).

In Figure 6, the evaluation method of ossification of cranial bone for SG II samples
based on line measurements is schematically illustrated. In Figure 6a, the newly formed
bone by SG II is indicated in the boxed area on the left side. The dotted box area in
Figure 6a is enlarged in Figure 6b. Bone formation activities were scaled by the length
of the bone zone on multiple perpendicular lines. For example, the bone length in line 4
was determined by the sum of 4a, 4b, and 4c. The bone-forming activities in the Teflon
ring (4 mm wide) were assessed using lines at 100 µm intervals (40 lines). As a control,
the boxed area of the sham bones was selected (Figure 6c), and the bone length in lines at
100 µm intervals (40 lines) inside the boxed area in Figure 6c was measured (Figure 6d).
The bone-forming activities of the SG II samples were evaluated with respect to those of
the sham control bones.
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Figure 6. (a) Newly formed bone by SG II sample on the left side cranial bone; (b) enlarged bone area
of the dotted box area in Figure 6a. Note: bone formation activities were scaled by the length of the
bone zone on multiple perpendicular lines; (c) the sham rat cranial bone; and (d) the enlarged bone
area of the dotted box area in Figure 6c. Note: Bone thickness was scaled by the length of the bone
zone on multiple perpendicular lines.

2.7. Statistical Analyses

Free statistical software (EZR version 1.55, Saitama Medical Center, Jichi Medical
University, Saitama, Japan) [49] was used for nonparametric tests, such as Fisher’s exact,
Kruskal–Wallis and Mann–Whitney U tests. The null hypothesis was rejected at p < 0.05.
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3. Results
3.1. Material Characterization of HyA Control, ux-tHyA, and x-tHyA
3.1.1. FTIR

Figure 7a shows the FTIR charts of dried (i) HyA control, (ii) ux-tHyA, (iii) x-tHyA,
and (iv) PEGDA cross-linker. Figure 7b shows the chemical structures of ux-tHyA with
detailed side chains [35], PEGDA cross-linker, and x-tHyA. The three materials (HyA
control, ux-tHyA, and x-tHyA) had similar IR absorption peaks, such as OH or NH peaks
at approximately 3300 cm−1, C=O peak at approximately 1600 cm−1, and C-O peak at
1045 cm−1 due to the common basic HyA structures. In contrast, two test tHyA samples
(ux-tHyA and x-tHyA) possessed a weak SH stretching peak at approximately 2600 cm−1

while control HyA lacked this peak, which reflected thiol modification of both ux-tHyA
and x-tHyA. The effect of PEGDA cross-linking on x-tHyA is ambiguous. The relative peak
height intensity at approximately 2900 cm−1 due to C-H of x-tHyA was higher than that of
ux-tHyA, resulting from adding PEGDA elements with abundant C-H bonds to ux-tHyA.
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cross-linker. (b) Chemical structures of ux-tHyA with detailed side chains, PEGDA cross-linker
and x-tHyA.



Polymers 2022, 14, 5368 11 of 26

3.1.2. SEM Observations

Figure 8a shows an SEM photomicrograph of a dried HyA control. It was highly
porous and fibrous. Figure 8b,c show those of the dried ux-tHyA and x-tHyA, respectively.
Microscopically, ux-tHyA had a loose and porous structure, while x-tHyA had a denser
and flat structure.
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3.1.3. Hyaluronidase Dissolution Tests

Figure 9 shows the results of the hyaluronidase dissolution tests of three dried HyA
samples. The mean dissolution time of x-tHyA was 2763 min, significantly longer than
those of the HyA control and ux-tHyA of < 110 min (p < 0.05). This means that cross-linking
of x-tHyA resulted in a significant increase in hyaluronidase dissolution time compared
with that of uncross-linked ux-tHyA. The dissolution time of ux-tHyA (104 min) was longer
than that of the HyA control (17 min) (p < 0.05).
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3.1.4. TG/DSC

Figure 10a,b show the TG and DSC curves of the TG/DSC thermal analyses of the
dried HyA control, ux-tHyA, and x-tHyA, respectively. The TG curves revealed that all
three HyL samples maintained their weight up to approximately 220 ◦C, followed by
gradual weight loss, while the loss rates of ux-tHyA and x-tHyA were smaller than that
of the HyA control (Figure 10a). The DSC curves clarified that both ux-tHyA and x-tHyA
had broad distinctive endothermic peaks in the temperature range of 200–400 ◦C, while the
HyA control lacked a peak (Figure 10b). The two peak endothermic temperatures of the
DSC curves are indicated by the arrows.
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Figure 10. (a) TG and (b) DSC charts of TG/DSC thermal analyses of dried HyA control, ux-tHyA,
and x-tHyA. Note: Arrows indicated peak temperatures of DSC endothermic curves of two samples.

3.2. Characterization of the Use of nHAp
3.2.1. Observation of Direct Binding between nHAp and Protein

Figure 11a–c show the bright field, fluorescence, and overlay images of nHAp particles
without FITC-labeled collagen (nHAp*FITC-Collagen (−)), respectively. It was confirmed
that the nHAp itself was not fluorescent and that the nHAp particles tended to agglomerate
in the saline solution. Figure 11d–f show those of nHAp particles mixed with FITC-labeled
collagen(nHAp*FITC-Collagen (+)). It became evident that FITC-labeled type I collagen
was strongly bound to nHAp powders, causing strong fluorescent reflections. This is
a direct proof of the binding between nHAp and the protein. In the latter case, nHAp
agglomeration appeared to be suppressed by the presence of collagen.
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3.2.2. Accelerated Protein Release Test

Figure 12 indicates the results of the accelerated protein release test of x-tHyA with
and without nHAp (x-tHyA*nHAp (−) and x-tHyA*nHAp (+)) in a saline solution. The
cumulative protein release amounts versus the original BSA quantity (wt%) in the x-
tHyA gels were plotted as a function of the elution period (days). Figure 12 presents two
important observations. The BSA protein was retained but slowly released from x-tHyA
without nHAp (x-tHyA*nHAp (−)) in a time-dependent manner. However, the amount of
protein eluted (wt%) from x-tHyA*nHAp (−) reached 100% after incubation for 7 days. In
the case of the addition of nHAp to x-tHyA (x-tHyA*nHAp (+)), the amount of BSA protein
released slightly decreased in all elution periods compared to those of x-tHyA*nHAp(−)
(p < 0.05; Mann–Whitney U test). These results implied that nHAp was strongly bound to
the BSA protein in x-tHyA and retarded the release of protein from x-tHyA into a saline
solution, and x-tHyA*nHAp(+) could release the protein for more than 7 days.
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3.3. Animal Studies
3.3.1. Animal Experiments with SG I

When using the SG I test material (SG I*nHAp (+)), cranial ossification was observed
in subcutaneous connective tissue in 7 out of 10 mice, while the control SG I materials (SG
I*nHAp (−)) did not form bone in 10 mice, and most Teflon rings were dropped. According
to Fisher’s exact test, it can be stated that test SG I caused statistically significant ossification
in the cranial subcutaneous connective tissues (success rate = 70%) of mice compared to the
control SG I (success rate = 0%) (p < 0.05) (Table 3).

Table 3. Bone-forming numbers in the cranial subcutaneous connective tissues of mice 8 weeks after
injection of 10 control SG I*nHAp (−) and 10 test SG I*nHAp (+) samples, respectively.

Sample Number of
Ossification Confirmed

Number of
Ossification Not Confirmed

Control SG I*nHAp (−) #

(x-tHyA + BMP)
0 10

Test SG I*nHAp (+) #

(x-tHyA + BMP + nHAp)
7 3

* means “and”. # p < 0.05 by Fisher’s exact test.

The ossification of SG I (SG I*nHAp (+)) is unique. Figure 13a,b show the front and
side micro-CT images of one mouse cranial bone 8 weeks after SG I*nHAp (+) was injected
into the cranial connective tissue. Cranial bone formation was evident. Figure 13c shows
four sliced rectangles inside the newly formed bone on the existing cranial bone shown in
Figure 13b. Figure 13d schematically indicates the state of bone existence on four slices of
Figure 13c. Most of the ossification occurred inside subcutaneous connective tissues such
as ectopic bone, while bone augmentation and connection with preexisting cranial bone
were quite limited and partial (e.g., cases (ii) and (iii) of Figure 13d). Figure 13e shows a
low-magnification HE-stained image of the cranial subcutaneous tissue of a mouse 8 weeks
after injection of SG I (SG I*nHAp (+)) material. Figure 13f shows a high-magnification HE
image of the yellow rectangle area in Figure 13e. The residual material (RM) appears to be
light purple. The periosteum (PS) originated in the deep interior of the cranial bone and
thickened. Island-like small new bone (NB) fragments exist above the existing cranial bone
(EB), both of which are anchored to the periosteum (PS). This continuation of bone between
EB and NB bridged by PS was evidence of partial bone augmentation of preexisting bone.

In contrast, the control SG I (SG I*nHAp (−)) material did not induce new bone (NB)
formation in mouse cranial bone. Figure 14a shows a front micro-CT image of one mouse
cranial bone 8 weeks after control SG I was injected into the cranial connective tissue.
Figure 14b shows a low-magnification HE-stained image of the cranial subcutaneous tissue
of a mouse 8 weeks after injection of SG I control material (SG I*nHAp (−)). Figure 14c
shows a high-magnification HE image of the yellow rectangle area in Figure 14b. Residual
material (RM) was present above the cranial bone, but did not cause bone formation.
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In contrast, the control SG I (SG I*nHAp (−)) material did not induce new bone (NB) 
formation in mouse cranial bone. Figure 14a shows a front micro-CT image of one mouse 
cranial bone 8 weeks after control SG I was injected into the cranial connective tissue. 
Figure 14b shows a low-magnification HE-stained image of the cranial subcutaneous tis-
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material (RM) was present above the cranial bone, but did not cause bone formation. 

Figure 13. (a) Front and (b) side micro-CT images of one mouse cranial bone 8 weeks after test SG I
(SG I*nHAp (+)) was injected into the cranial connective tissue; (c) four sliced rectangles inside the
newly formed bone on the cranial existing bone of Figure 13b; (d) schematical indication of bone
existence states on four slices of Figure 13c; (e) the low magnified HE-stained image of the cranial
subcutaneous tissue of a mouse 8 weeks after injection of SG I (SG I*nHAp (+)) material; (f) the
high-magnified HE image of the yellow rectangle area of Figure 13e. Note: RM, residual material; PS,
periosteum; NB, new bone; EB, existing bone; BM, bone marrow.
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rial; and (c) the high-magnified HE image of the yellow rectangle area of Figure 14b. Note: RM, 
residual material; PS, periosteum; EB, existing bone. 
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weeks of placement and the corresponding soft X-ray images, respectively. Test SG II in-
duced additional bone formation inside the Teflon ring. Figure 15c shows a low-magnifi-
cation HE-stained image of the cranial bone of a rat 8 weeks after the placement of test SG 
II (SG II*BMP (+)). Figure 15d,e show higher magnified HE images the sites of which are 
indicated by yellow rectangles (i) and (ii) in Figure 15c, respectively. Test SG II (SG II*BMP 
(+)) produced NB both on the preexisting cranial bone (EB) (Figure 15c,d) and around the 
RM that appears in light purple (Figure 15c,e). The boundary between the NB and EB was 
observed, as indicated by the * marks in Figure 15d. This case of bone formation can be 
termed bone augmentation. It was also characteristic that the periosteum (PS) thickened 
and appeared to prelude to NB. Around the residual test SG II*BMP (+) (RM), both the NB 
and PS existed as island forms in Figure 15e far away from the preexisting bone. This type 
of bone may be called ectopic bone in connective tissue. Figure 16a shows a low-magnifi-
cation HE image of the sham rat cranial bone. Figure 16b shows a high-magnification HE 
image of the yellow rectangle area shown in Figure 16a. No bone increment was observed 
above the preexisting bone. Figure 16c shows the tool-box graph of multiple line-scaled 

Figure 14. (a) Front micro-CT image of one mouse cranial bone 8 weeks after control SG I (SG I*nHAp
(−)) was injected into the cranial connective tissue; (b) the low magnified HE-stained image of the
cranial subcutaneous tissue of a mouse 8 weeks after injection of SG I (SG I*nHAp (−)) material;
and (c) the high-magnified HE image of the yellow rectangle area of Figure 14b. Note: RM, residual
material; PS, periosteum; EB, existing bone.

3.3.2. Animal Experiments with SG II

When using test SG II (SG II*BMP (+)) in six Teflon rings on rat cranial bones, one ring
fell off and five rings remained (83% survival and bone formation rate). Figure 15a,b show
three test SG II samples inside Teflon rings placed on one rat cranial bone after 8 weeks
of placement and the corresponding soft X-ray images, respectively. Test SG II induced
additional bone formation inside the Teflon ring. Figure 15c shows a low-magnification
HE-stained image of the cranial bone of a rat 8 weeks after the placement of test SG II
(SG II*BMP (+)). Figure 15d,e show higher magnified HE images the sites of which are
indicated by yellow rectangles (i) and (ii) in Figure 15c, respectively. Test SG II (SG II*BMP
(+)) produced NB both on the preexisting cranial bone (EB) (Figure 15c,d) and around the
RM that appears in light purple (Figure 15c,e). The boundary between the NB and EB was
observed, as indicated by the * marks in Figure 15d. This case of bone formation can be
termed bone augmentation. It was also characteristic that the periosteum (PS) thickened
and appeared to prelude to NB. Around the residual test SG II*BMP (+) (RM), both the NB
and PS existed as island forms in Figure 15e far away from the preexisting bone. This type of
bone may be called ectopic bone in connective tissue. Figure 16a shows a low-magnification
HE image of the sham rat cranial bone. Figure 16b shows a high-magnification HE image
of the yellow rectangle area shown in Figure 16a. No bone increment was observed above
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the preexisting bone. Figure 16c shows the tool-box graph of multiple line-scaled cranial
bone lengths using test SG II (SG II*BMP (+)) and sham cranial bones. In the test SG II
material, the bone length in the cranial region was enlarged with a statistically significant
difference compared to the sham bones (p < 0.05).
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Figure 15. (a) Photo and (b) soft X-ray image of three test SG II samples (SG II*BMP (+)) inside Teflon
rings placed on one rat cranial bone after 8 weeks of placement; (c) the low magnified HE-stained
image of the cranial bone of a rat 8 weeks after the placement of test SG II (SG II*BMP (+)); (d) higher
magnified HE images of the yellow rectangle (i) of Figure 15c; and (d,e) higher magnified HE images
of the yellow rectangle (ii) of Figure 15c. Note: RM, residual material; PS, periosteum; NB, new bone;
EB, existing bone. Note: * indicates the border between NB and EB.
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rings. Figure 17a,b show the skin of a rat with control II gel (SG II*BMP (−)) in two Teflon 
rings after 8 weeks of placement and the corresponding soft X-ray image, respectively. 
The Teflon rings were separated from the cranial bone and embedded in the cranial skin. 
NB did not form inside the rings, while weak X-ray opacity was observed inside the rings, 
analogous to the surrounding skin tissues (Figure 17b). Figure 17c shows a low-magnifi-
cation HE-stained image of the interior of the Teflon ring 8 weeks after placement of con-
trol gel II (SG II*BMP (−)). Figure 17d shows the magnified HE-stained image of the yel-
low-dotted rectangle in Figure 17c. Inside the ring, dermal tissues (DM) were filtered and 

Figure 16. (a) The low-magnified HE image of the sham rat cranial bone, (b) the high-magnified HE
image of the yellow rectangle area in Figure 16a, and (c) the tool-box graph of multiple line-scaled
bone length of cranial area bone using test SG II (SG II*BMP (+) = x-tHyA + nHAp + BMP) and sham
cranial bones. The statistical analysis was performed by Mann–Whitney U test.

When using the control SG II (SG II*BMP (−)), two rings were lost; two rings were
filled with dermal tissue and a slight ossification was found inside the two rings on the
cranial bone. Control SG II did not induce stable cranial bone formation within Teflon rings.
Figure 17a,b show the skin of a rat with control II gel (SG II*BMP (−)) in two Teflon rings
after 8 weeks of placement and the corresponding soft X-ray image, respectively. The Teflon
rings were separated from the cranial bone and embedded in the cranial skin. NB did not
form inside the rings, while weak X-ray opacity was observed inside the rings, analogous to
the surrounding skin tissues (Figure 17b). Figure 17c shows a low-magnification HE-stained
image of the interior of the Teflon ring 8 weeks after placement of control gel II (SG II*BMP
(−)). Figure 17d shows the magnified HE-stained image of the yellow-dotted rectangle in
Figure 17c. Inside the ring, dermal tissues (DM) were filtered and filled the inner space
of the Teflon ring, while residual material (control gel II) (RM) was minimally observed.
Inside the dermal tissues, inflammatory cells were widely infiltrated, blood vessels existed,
and no bony structures were found.
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caused by the characteristic base structure and polymerization reaction. Glycosil® and Ex-
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Figure 17. (a,b) Photograph of the skin of a rat with control II gels (SG II*BMP (−)) in two Teflon
rings after 8 weeks of placement and the corresponding soft X-ray image, respectively; (c) low-
magnification HE-stained image of the interior of the Teflon ring 8 weeks after the placement of
control gel II (SG II*BMP (−)); and (d) magnified HE-stained image of the yellow-dotted rectangle in
Figure 17c. Note: RM, residual material; DM, dermal tissues; BV, blood vessels.

4. Discussion

Cross-linkable HyA (x-tHyA) was confirmed by FTIR to be thiol-modified and cross-
linked using a PEGDA cross-linker (Figure 7). The physical and chemical properties of
uncross-linked and cross-linked thiol-modified HyA (ux-tHyA and x-tHyA) appear to be
caused by the characteristic base structure and polymerization reaction. Glycosil® and
Extralink Lite® covalently bond to each other like Lego blocks. When mixed, Extralink’s
acrylate reacts with the thiol groups of the Glycosil® components by click chemistry
(Michael addition reaction). Crosslinks form in trans (e.g., Glycosil molecules can link to
neighboring Glycosil molecules). In addition, given Glycosil’s large molecular weight and
ability to adopt semiflexible random coil configurations, it is likely to loop back and bind
to the cis. The final clear, transparent, viscoelastic hydrogel formed at physiological pH
and temperature in approximately 20 min and was greater than 98% water. This timeframe
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allows an investigator to customize the hydrogel with drugs to load and deliver the mixture
through a cannula [33]. The molecular weight of ux-tHyA must be significantly greater
and more hydrophobic than that of the HyA control. Therefore, ux-tHyA absorbed less
water, resulting in a porous but denser structure compared to the HyA control after freeze-
drying (Figure 8); and it was relatively heat resistant, comparable to x-tHyA (Figure 10). It
also became evident that by cross-linking, x-tHyA became very resistant to hyaluronidase
(Figure 9), had a dense and flat surface upon freeze-drying (Figure 8), and was relatively
heat-durable when heated at temperatures higher than 200 ◦C (Figure 10). This plain
surface might be attributed to the formation of stronger film-like structures of x-tHyA after
freeze-drying. The freeze-dried structures of HyA samples might reflect the molecular
and cross-linked structures of gels with abundant water, while an increase in molecular
weight leads to a decline in water content [50]. Water evaporation from the lower molecular
structures of HyA materials (e.g., HyA control) during freeze-drying might create fibrous
and porous freeze-dried structures. However, the fibrous and porous structures of the
HyA control and ux-tHyA were not used in the animal studies of this study. Gels (x-tHyA)
prepared by mixing ux-tHyA and water were used as base materials and applied to the
cranial area of murines.

It was confirmed that the protein (collagen type I labeled with FITC) was directly
bound to nHAp (Figure 11), which made the study to consider adding nHAp and BMP to
x-tHyA meaningful. Two experimental results using test SG I and SG II indicate that
x-tHyA + nHAp + BMP SG material was osteoinductive in the murine cranial areas
(Figures 13, 15 and 16). The dual use of nHAp and BMP is a prerequisite for successful bone
formation using x-tHYA (Table 3). The lack of nHAp or BMP led to the failure of reliable
bone formation in both SG I and SG II studies. For bone formation using x-tHyA, BMP is
primarily necessary for direct bone induction [51], and nHAp is also indispensable as a
carrier to absorb and slowly release BMP to maintain the subsequent time required bone for-
mation [52–55]. Proteins have been reported to be absorbed and slowly released by nHAp
through electrostatic interactions [56]. It was reported that x-tHyA maintained and could
release BMP for up to 4 weeks [33], but our experimental results (Figure 12) contradict this
report. x-tHyA itself (x-tHyA*nHAp(−)) retained the BSA protein for only 7 days (1 week).
In contrast, with the addition of nHAp, x-tHyA (x-tHyA*nHAp(+)) retained BSA protein
over 7 days, and its dissolution was capable of continuing for 2–3 weeks (Figure 12). This
delayed protein release has been considered beneficial for bone regeneration [52,53], which
generally requires a long period of time (more than a month) [57]. Before animal studies, it
is important to unveil these material characteristics of x-tHyA because few studies have
been published [33].

Although the protein type and quantities between BSA in the elution tests and BMP
used in the animal studies differed considerably, the phenomena observed in the previous
test results (Figure 12)—especially the delayed protein elution trend by nHAp—might be
applicable to the latter animal studies. We used three mixed proteins due to their availability
and cost performance. The approximate molecular weights of BMP, BSA, and collagen
type I are 26, 66, and 300 kDa, respectively [58]. The size of the protein is a key element
for apatite binding. Although apatite can bind to all three proteins, a protein with a lower
molecular weight is considered to bind more easily to nHAp. Such proteins with lower
molecular weights could be loaded and released from nHAp for a longer period. Increased
molecular weight of the protein may present a 3D conformational hindrance [59] to bind
with nHAp. The surface charge may be another important factor [60]. HAp has positive
and negative charges, which are beneficial for binding to oppositely charged proteins
(including almost all charged proteins). Therefore, the findings observed in BSA and type I
collagen for nHAp could be applicable to BMP for nHAp with intensified levels. The use of
BSA instead of BMP for slow-release studies of carrier materials has been common and is
considered a standard protocol [61]. BSA has been loaded as a protein model drug in many
studies [62].
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The consideration of animal studies is as follows. As mentioned, x-tHyA was biocom-
patible and largely bio-absorbed but remained in vivo for 8 weeks and did not cause adverse
effects such as inflammation, immunological reactions, or fibrous tissue encapsulation [63].

We used mice and rats for the SG I and SG II experiments, respectively, because mice
were more cost-effective and easier to handle for simple injection, and Teflon ring insertion
was practically limited to the size of the rat cranial zone. During feeding, the animals
actively moved and touched the injected sites, leading to movement and loss of the injected
material in vivo. Consequently, bone formation at the target location may be hindered.
The use of the cap and band could stabilize and protect the injected materials in future
studies [64].

Martinez-Sanz et al. [19] reported a successful bone augmentation in mandibular bone
in rats by injection of gels consisting of self-formulated cross-link-type HyA, nHAp, and
BMP. They precisely injected their biomaterials subperiosteally into the innate mandibular
diastema (an inactive site) and increased bone volume proportional to the dose of BMP
applied. However, subperiosteal injection of gel into the cranial bone is generally quite
difficult [65], and success reports have been rare [66].

In this study, we performed the injection of test SG I into the subcutaneous tissues
above the cranial bone of mice and placement of SG II directly on the exposed cranial bone
of rats, lacking full cover of the periosteum, respectively, and achieved partial success in
additional cranial bone formation. During the injection of test SG I, the tip of the needle
might slightly break the periosteum, leading to limited contact between the SG and the
cranial bone, and most of the injected substances were located within the cranial connective
soft tissue. Ectopic bone formation [39] occurred predominantly in cranial connective
tissues, and cranial bone augmentation of preexisting bone by the membranous ossification
mechanism [67] occurred in limited amounts (Figure 13). The former type of bone formation
is undesirable for future clinical use. The size and morphology of the newly formed bones
by test SG I varied between samples. We report a case of ectopic bone formation by SG I
in Figure 13. Ectopic bone formation has been reported to significantly alter the size and
morphology, making morphological analysis quite difficult [68,69]. When placed directly
on the cranial bone using test SG II inside the Teflon ring, the periosteum was detached
from the cranial bone, and most folded to the periphery during the first operation. During
the healing process, the periosteum might recover cranial bone, while test SG II was in the
process of biodegradation. We adopted a new morphological evaluation method for bone
formation using SG II materials containing BMP based on line measurements (Figure 6).
The bone formation level of the test SG II materials was not compared with that of the
control SG II materials because the latter did not produce reliable numerical data. We used
the heights of the sham bones as a control for comparison with test SG II and confirmed
that the test SG II materials induced considerable new bone formation (Figure 16). Two
mixed modes of bone formation were observed. One major part was bone augmentation
from preexisting bone, while the other minor part was ectopic bone in the connective tissue
around the remaining material above the preexisting bone (Figure 15). The latter bone was
also undesirable.

It should be stated that the BMP application site determines bone quality, such as in
ectopic and orthotopic models [70]. When applied to an osseous site, the osseous bone may
be formed. However, when applied to soft tissue, such as connective tissues and muscle, BMP
might cause ectopic bone formation. Prudent site selection is necessary for tissue engineering
when using injectable scaffolds with BMP for bone augmentation. The appropriate dose
of BMP is also an important factor for successful bone augmentation. The amount of BMP
used in this study was comparable to that used in other studies [17,19,40,52,68,70]. Precise
subperiosteal injection of SG in sol stage containing moderate dose of BMP is anticipated by
developing a new surgical technique to achieve 100% bone augmentation from preexisting
bone [71].

An alternative approach could be to fill box-type bone defects with SG material
coupled with a covering of membranous material [72], although it deviates from injection-
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only treatment. Bone formation using only injected sols is a fascinating technique for future
clinical dentistry due to its ease of handling and less invasive treatment, as mentioned
previously [8,73]. In situ gelation of the poured sol is desirable for long-term position
stability [74]. It is hoped that the set x-tHyA gel that is currently still soft and viscous will
be hardened to increase the position stability.

5. Conclusions

Within the limitations of this study, using an SG material—thiol-modified hyaluronic
acid (x-tHyA)—the following conclusions were obtained:

(1) Instrumental analyses (FTIR, TG/DSC, and SEM) confirmed the presence of thiol
modifications and characteristic cross-linking reactions. The cross-linked structure
appeared to result in a considerably long hyaluronidase dissolution time and a
denser/plain microstructure upon freeze-drying.

(2) We confirmed that nHAp is directly bound to proteins and could play an important
role as a growth factor carrier to hold and release proteins for a long period, which is
beneficial for sustaining the time required bone formation.

(3) BMP is a strong bone-forming growth factor. However, its application must be local-
ized to osseous sites for clinically significant bone augmentation. BMP easily causes
undesirable ectopic bone formation when applied to connective soft tissues. It is
highly anticipated that a technique will be developed for the precise subperiosteal
injection of bone-forming SG materials.

(4) The combined use of nHAp and BMP for x-tHyA succeeded in bone formation at the
rate of 70−83%, achieving a relatively high positive record. The dual use of nHAp
and BMP is vital for successful bone formation.

(5) Because the materials used (x-HyA, nHAp, and BMP) are widely available, it is
highly desirable to develop a new injectable bone-forming system consisting of these
materials for widespread clinical use soon.
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Abbreviations

BMP Bone morphogenetic protein
BV blood vessels
DG water Degassed water
DM Dermal tissues
DSC Differential scanning calorimetry
EB Existing bone
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FTIR Fourier-transformed infrared spectroscopy
HAp Hydroxyapatite
HE Hematoxylin and eosin
HyA Hyaluronic acid
micro-CT Micro-computed tomography
NB New bone
nHAp Nano-hydroxyapatite
PEGDA Polyethylene glycol diacryalate
PS Periosteum
RM Residual material
SEM Scanning electron microscopy
TG Thermogravimetric analysis
ux-tHyA Un-cross-linked thiol-modified hyaluronic acid
x-tHyA Cross-linked thiol-modified hyaluronic acid
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