マウス扁平上皮癌における細胞周期とアポトーシスの関連 - Laser Scanning Cytometer (LSC) を用いて-

笹森 傑
 岩手医科大学歯学部口腔外科学第二講座
 (主任:関山 三郎 教授)
 (受付:1999年12月29日)
 (受理:2000年1月7日)

Abstract : Apoptosis is different from necrosis of the shell in terms of the morphology of its process. It has been shown that apoptosis is induced by many anticancer drugs. Recently, there are a lot of reports about the relationship between the cell cycle and apoptosis in tumor inhibition, but the relationship between the cell cycle and the morphology alteration of apoptosis *in vivo* have not been demonstrated. This study shows the relationship between the cell cycle and apoptosis of the murine squamous cell carcinoma cells with a Laser Scanning Cytometer (LSC). As a result, There was a significant correlation between the incidence of apoptosis and tumor inhibition by cisplatin in the murine squamous cell carcinoma cells. And the incidence of apoptosis increased in a dose-dependent manner. There was a trend toward higher incidence of the murine squamous cell carcinoma cells in cisplatin administration group than in control group. In each phase of the cell cycle, the sequential change of the Apoptotic Index (AI) was not recognized.

In this study, it was confirmed that apoptosis was induced by cisplatin in the murine squamous cell carcinoma cells. Furthermore, the relationship between the cell cycle regulation mechanism and AI was suggested.

Key works : apoptosis, cisplatin, cell cycle, Laser Scanning Cytometer

緒 言

アポトーシスは、その過程において従来から のネクローシス^{1,2)}とは形態学的に異なる。こ のアポトーシスは各種抗癌薬により誘導される ことが報告され^{3~7)},核の凝縮、細胞表面微絨 毛の消失、アポトーシス小体の出現といった形 態学的変化と DNA のヌクレオソーム単位での 断片化が特徴的である。また、アポトーシスに おける一連の形態変化のうち、核が凝縮する現 象は、細胞周期におけるG2+M期にみられる 現象に類似していることなどから、アポトーシ スと細胞周期との間に相関関係があると考えら れ、特に遺伝子領域の研究が多数報告されてき た^{8~12)}。アポトーシス細胞の出現と細胞周期と の関連は抗癌薬および細胞の種類により違いの あることが判明したが、扁平上皮癌での各細胞 周期におけるアポトーシス細胞誘導量の生体内 における変化に関する報告は見あたらない。 そこで本研究では、抗癌薬投与後のマウス扁

Relationship between cell cycle and apoptosis of murine squamous cell carcinoma cells by laser scanning cytometer (LSC)

Masaru Sasamori

(Second Department of Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University. 1 – 3 –27 Chuo-dori, Morioka, Iwate. 020–8505 Japan)

岩手県盛岡市中央通1丁目3-27(〒020-8505)

Dent. J. Iwate Med. Univ. 25: 70-79, 2000

平上皮癌細胞における腫瘍抑制効果とアポトー シス細胞の出現率および細胞周期との関連につ いて、スライドガラス上に静置された細胞集団の 核 DNA 量の測定とその形態観察を同時に行う ことを可能とした Laser Scanning Cytometer (LSC)を用いて検討した。

材料および方法

1.実験動物

岩手医科大学歯学部口腔外科学第2講座にて 兄妹交配により、近交系として維持している WHT/Htマウス¹³⁾の雌、8~12週齢(体重24~ 32g)を1群あたり5匹とし、水と固形試料 (オリエンタル酵母工業)は自由に摂取させた。 2. 腫瘍

WHT/Ht マウスに自然発生し、胸部皮下に 継代移植している扁平上皮癌細胞を使用した。 この腫瘍は、Tumorigenic dose rate 50 (TD₅₀) 値が14.4と極めて低免疫原性である。

3. 細胞浮遊液の調整

近交系 WHT/Ht マウスに継代移植している 腫瘍を無菌的に採取し、滅菌した少量の phosphate buffered saline (以下 PBS)を加え 剪刀にて細切し、#150白金 mesh で濾過した。 これに PBS を加え細胞を洗浄し、回収した細 胞浮遊液を800rpm で3回遠心洗浄し、PBS に 再浮遊させて使用した。生細胞数の算定は0.2% トリパンブルー染色で行い、細胞の viability は各ロットとも90%以上であった。浮遊液は、 血球計算板上で生細胞数を算定した後 PBS で 1 × 10⁶ 個 / 0.1 ml に 調 製 し、1.0 ml 注 射 器 (Terumo 社)を用いて、0.1mlをマウス胸部皮 下に移植した。

4. 薬剤濃度および投与法

シスプラチン(CDDP, 日本化薬)は生理食 塩水に溶解し,濃度は0.1mg/kg, 1.0mg/kg, 10.0 mg/kg, 25.0mg/kgになるように調製した。

シスプラチンは腹腔内投与とし、移植した腫 瘍の短径が10.0mmに達した時点から投与を開始 した。対照群は生理食塩水10.0mg/kgを投与し た。 5. シスプラチンによる腫瘍抑制効果の判定

腫瘍体積の測定は、薬剤投与後1日目、2日 目、4日目、6日目に行った。腫瘍体積は腫瘍 の長径および短径をノギスにて計測し、(長径) ×(短径)²×0.5の式から求めた。腫瘍抑制効果 は inhibition ratio(以下 IR)として、(1-シ スプラチン投与群腫瘍体積/対照群の腫瘍体 積)×100の式¹⁰から求めた。また同時に体重の 測定を行った。

6. アポトーシス細胞と細胞周期の経日的測定 アポトーシス細胞と細胞周期の経日的変化の 測定は、予備実験より腫瘍抑制効果がもっとも 著明であった10.0mg/kgを単回投与し、1日目, 2日目、4日目、6日目のそれぞれにおいて腫 瘍を摘出し検索した。

7. 標本作製

各条件下で摘出した腫瘍は、滅菌した少量の PBS を加え眼科用剪刀にて細切し、これに PBS を加え、800rpm で3回遠心洗浄し、1% paraformaldehyde で固定した後0.2% Triton X100で裸核化し、40/mナイロン mesh で濾過 した。回収した細胞浮遊液をスライドガラス上 に滴下した後室温で乾燥し、空気乾燥標本を作 製した。

8. アポトーシス細胞の検出

アポトーシス細胞の検出はterminal deoxynucleotidyl transferase (TdT) assay (TUNEL 変法)で行った。空気乾燥標本をPBS で2回洗浄し, ApopTag Direct-Fluorescein in situ Apoptosis Detection Kit (INTERGEN 社)を用いてfluorescein isothiocyanate (FITC)標識し,さらに propidium iodide (PI, Sigma 社) 5 μ g, 0.1%RNase (Sigma 社)加 PBS で15分間室温で染色した。TdT 陽性細胞 あるいはアポトーシス小体を認めたものをアポ トーシス陽性細胞とした。細胞数1000個(200 cell×5視野)に対するアポトーシス陽性細胞の パーセンテージをApoptotic Index (以下 AI) として表した。

9. 細胞周期の解析

TdT assay で蛍光染色されたスライドガラ

Fig. 1. Inhibition of tumor volume by cisplatin. Squamous cell carcinoma cells were subcutaneously injected into WHT/Ht mice. Cisplatin administration was initiated when the diameter of the inoculated tumor reached 10.0mm. The 0.1, 1.0, 10.0 and 25.0 mg/kg groups showed significant inhibition of tumor volume on the 6 th day. Significance was determined by Fisher's PLSD (*p<0.05). Bars, SD.

: significant difference from control (p < 0.05)

ス上の観察に適した部分を選択し,LSC (LSC 101, オリンパス光学)を用いて5.000~10.000個の細胞の核DNA測定,DNAヒストグラム (Fig. 7~11,C) およびサイトグラム (Fig. 7~11,A,B) を作成した。 PI Fluorescence Value は PI 染色された核の総蛍光量によって DNA量を表し,PI Fluorescence Peak は PI 染色された核の中での最も強い蛍光量で核の凝縮を表す。また,細胞周期の変化はG0+G1期,S期,G2+M期の測定細胞総数に対するG0+G1期およびG2+M期細胞のパーセンテージで表した。

10. 統計学的検討

統計学的処理は Fisher's PLSD で行い、p < 0.05を有意差とした。

結 果

1. WHT/Htマウス扁平上皮癌に対するシス プラチンの腫瘍抑制効果

シスプラチン投与後6日目の平均腫瘍体積 (mean±SD)は、対照群では6,070.1±1,092.4 mm³であった。対照群とシスプラチン投与群と の比較では、0.1mg/kg投与群、1.0mg/kg投与群、

Fig. 2. Body weight of mice treated with cisplatin. The 25.0 mg/kg group showed significant decreases in body weight on the 6 th day. Significance was determined by Fisher's PLSD (*p<0.05). Bars, SD. # : significant difference from control (p<0.05)</p>

10.0mg/kg投与群および25.0mg/kgは4日目から 腫瘍増殖が有意に抑制されはじめ、6日目には それぞれ4,827.0±776.4mm³(IR, 20.5%), 1,914.0±414.0mm³(IR, 68.5%),414.1±164.3 (IR, 93.2%),319.8±108.3(IR, 94.7%)と顕 著な抑制効果が認められた(Fig. 1)。

シスプラチン投与後のマウスの体重は、0.1 mg/kg投与群、1.0mg/kg投与群、10.0mg/kg投与 群では対照群とほぼ同様の変化を示し、有意差 は認めなかった。しかし、25.0mg/kg投与群では 1日目から体重が有意に減少し、6日目の平均 体重は対照群の71.0%であった(Fig. 2)。

2. シスプラチン濃度に対する AI

シスプラチン投与後6日目のAIは、対照群 では 0.62 ± 0.16 であり、0.1mg/kg投与群の $1.08\pm$ 0.15との間に有意差はみられなかったが、1.0 mg/kg投与群では 2.92 ± 0.31 、25.0mg/kg投与群 では 2.00 ± 0.51 と有意な増加が認められた。最 高は10.0mg/kg投与群での 5.15 ± 1.03 であった (Fig. 3)。これは、当教室の長内¹⁵⁾の報告と同 じ結果である。

 シスプラチン投与後の AI と細胞周期との 経日的変化

シスプラチン10.0mg/kg投与後の AI の経日的 変化は、対照群は0.62±0.16%であり、シスプラ チン投与後1日目では2.90±0.61、2日目では

笹森

傑

Fig. 3. Relationship between dose of cisplatin and apoptotic index. Tumors treated with each dose of cisplatin were stained with the TdT assay on the 6 th day. Apoptotic Index increased dose dependently. Significance was determined by Fisher's PLSD (*p < 0.05). Bars, SD.

: significant difference from control (p < 0.05)

Fig. 5. Relationship between duration of administration and cell in the G2+M phase. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay. Cell in the G0+G1 phase showed significant increases on the 2 nd day. Significance was determined by Fisher's PLSD (*p<0.05). Bars, SD. # : significant difference from control (p< 0.05)

4.18±0.66と有意な増加が認められ、4日目には4.91±0.70、6日目には5.15±1.03と増加傾向を認めた(Fig. 4)。

細胞周期の経日的変化では、G0+G1期の細 胞が対照群と比較し、シスプラチン投与後1日 目では全ての細胞に対するG0+G1期の細胞が 減少傾向を認めたものの、対照群に対して有意 差は認められなかったが、2日目では有意な増

- Fig. 4. Relationship between duration of administration and apoptotic index. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay. Apoptotic Index increased time dependently. Significance was determined by Fisher's PLSD (*p < 0.05). Bars, SD.
 - # : significant difference from control (p \leq 0.05)

Fig. 6. Relationship between duration of administration and cell in the G2+M phase. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay on the 6 th day. Cell in the G2 +M phase showed significant decreases on the 2 nd day. Significance was determined by Fisher's PLSD (*p<0.05). Bars, SD.

: significant difference from control (p < 0.05)

加を認めた (Fig. 5)。

G2+M 期の細胞では、G0+G1期とは逆に1 日目では全ての細胞に対するG2+M 期の細胞 が増加傾向を認めたものの、対照群に対して有 意差はみられず、2日目で有意な減少が認めら れた(Fig. 6)。

4. 各細胞周期における AI

対照群では、subG1期にのみアポトーシス細

<3> Value vs. Peak • . <2> Area vs. Value -• PI Fluorescence Area PI Fluorescence Peak В A PI Fluorescence Value PI Fluorescence Value -. <2> Area vs. Value 506 subG1 G0+G1 С - Ce -= Ce -404 Full Scale Count 303 202 G2+M S 101 - Ce -- Ce -50 100 150 PI Fluorescence Value

笹森

Fig. 7. Histogram, Cytogram and Cell Features Obtained by LSC. The tumor was injected with 10.0mg/kg of physiological saline, and stained with the TdT assay on 6 th day. Morphological apoptotic cells were observed in subG1 area.

Fig. 9. Histogram, Cytogram and Cell Features Obtained by LSC. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay on the 2 nd day. There was a significant higher incidence of the murine squamous cell carcinoma cells in the G0+G1 phase in cisplatin administration group than in control group. Morphological apoptotic cells were observed in the subG1, S and G2+M area.

Fig. 8. Histogram, Cytogram and Cell Features Obtained by LSC. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay on the 1st day. There was a trend toward higher incidence of the murine squamous cell carcinoma cells in the G0+G1 phase in cisplatin administration group than in control group. Morphological apoptotic cells were observed in subG1 area.

Fig. 10. Histogram, Cytogram and Cell Features Obtained by LSC. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay on the 4 th day. Morphological apoptotic cells were observed in each phase of the cell cycle.

Day	AI in each phase of cell cycle (mean \pm SD)				
	SubG1 phase	G0+G1 phase	S phase	G2+M phase	
cont.	$0.62 {\pm} 0.16$	0	0	0	
1	$2.90 \pm 0.61 \#$	0 ר ר	0 гг	0	ר ר.ר
2	$3.00 \pm 0.35 \#$	0 *	0 ,	$1.17 \pm 0.56 \#$	*
4	$2.96 \pm 0.18 \#$	$0.53 \pm 0.25 \# $	$0.28 \pm 0.15 \# $	1.16±0.42#	*
6	$3.24 \pm 0.84 \#$	0.54±0.05# []] *]	$_{0.27\pm0.08\#}$]*]	1.10±0.16#	

Table 1. Relation between duration of administration and AI of the cell cycle

The statistical significance was determined by Fisher's PLSD (*p < 0.05) # : significant difference from control (p < 0.05)

Fig. 11. Histogram, Cytogrtam and Cell Features Obtained by LSC. The tumor was treated with 10.0 mg/kg of cisplatin, and stained with the TdT assay on the 6 th day. Morphological apoptotic cells were observed in each phase of the cell cycle.

胞が認められた (Fig. 7)。 シスプラチン10.0 mg/kg投与後1日目ではG2+M期に細胞集積を 認め, アポトーシス細胞はsubG1期にのみ認め られた (Fig. 8)。2日目ではG0+G1期への細 胞集積を認め, アポトーシス細胞はsubG1期お よびG2+M期に認められた (Fig. 9)。4日目, 6日目では, ともに DNA ヒストグラムは対照 群に近づき,各細胞周期にアポトーシス細胞を 認めた (Fig. 10, 11)。

シスプラチン投与後の各細胞周期において は、アポトーシス細胞が出現した後は経日的に AIの有意な増加は認められなかった(Table 1)。

考 察

現在,悪性腫瘍に対する化学療法は放射線療 法、手術療法とともに臨床で広く用いられてお り,いくつかの腫瘍においては劇的は効果を示 すものもある。口腔領域の扁平上皮癌は抗癌薬 に対する反応性が比較的良好であることから, 化学療法が行われることが多い。近年、この化 学療法においての細胞死誘導にはネクローシス とアポトーシスの2つの様式があることが示さ れた。癌治療において最も重要なことは、でき るだけ多くの癌細胞に死を誘導することであ り、細胞死の様式はさほど重要ではない。しか し,一般にアポトーシス誘導に必要な抗癌薬濃 度はネクローシス誘導に比べて低いと考えら れ,本研究においても,高濃度のシスプラチン 投与によりアポトーシス細胞の出現率が低下 し, 逆にネクローシス細胞の増加を認めた。こ のことから,アポトーシス誘導の研究が副作用 の少ない,より効果的な化学療法を開発する上 で重要であると思われる。

アポトーシスは、1972年 Kerr ら¹⁶⁰により、ネ クローシスとは異なるもう一つの細胞死の形態 として報告された。アポトーシスは核内のクロ マチンの網状構造がなくなり、凝縮する。クロ マチンは核膜周辺に半月状に凝縮することが多 く、やがて凝縮した核は断片化し、それを細胞 膜が包み込むようにして細胞自体が断片化し、 アポトーシス小体 (apoptotic body) が形成さ

傑

れた後,マクロファージなどの食細胞や隣接す る細胞に貪食される。そのためアポトーシスで はネクローシスと異なり炎症反応はみられない とされている。

アポトーシス細胞の検出法には,DNAのヌ クレオソーム単位での断片化をアガロースゲル 電気泳動により検出する生化学的検出法,光学 顕微鏡および電子顕微鏡による形態学的検出 法, flow cytometry (FCM)を用いた解析など がある。

今回使用した Laser Scanning Cytometer (LSC) は、1991年に Kamentsky ら¹⁰によって 開発された。この装置はこれまで個々の細胞お よび細胞集団測定に用いられてきたFCMおよ び image cytometry (ICM) の長所を合わせ もった機器である。これまで大量の細胞を迅速 に測定するのには FCM を、顕微鏡下の細胞の 解析には ICM を用いてきた。しかしながら, FCM では、細胞周期に対応した細胞の形態を 観察する目的にはソーティング(細胞分取)を 行う必要があり、これは技術的に困難であり、 膨大な時間を必要とするという欠点があった。 一方, ICM は複雑な計算処理や多量の記憶容量 を要するために、研究者の要求に十分に対応で きなかった。しかし、最近のコンピューター技 術の発展により、研究者の要求に十分対応しう る装置として、LSC が開発された。LSC の原理 は、蛍光染色されたスライドガラス上の細胞を レーザー走査し、得られた蛍光から、蛍光標識 した物質の成分量、大きさを測定し、同時にス ライドガラス上の座標位置を記憶する。そのた め,形態確認したい測定データを指定すると, その細胞の形態が顕微鏡下に、またはモニター 上で観察することができる。あるいはその逆 で、細胞像から測定データを呼び出すことも可 能である。これにより測定データと形態観察の 照合ができ、各細胞周期におけるアポトーシス 細胞の観察が可能となった。

アポトーシス陽性細胞の検出において,LSC を用いて細胞を測定する際,一回の測定細胞数 を200に設定して行ったが,測定単位を一画面 としているため,設定値を越えることもあっ た。

TdT assay¹⁸⁾は, TdT を用いて DNA の 3' -OH 末端に FITC 標識 dUTP を付加し, 蛍光 顕微鏡でアポトーシス細胞を検出する方法とし て、非常に有用である。しかし、ネクローシス でも不均一な DNA 鎖の切断が生じること^{i®} や,核の濃縮がみられること20,21)がある。本研究 においても、 TdT assay にて DNA strand break 陽性細胞が46.23%であるにも関わらず 形態学的にアポトーシスを示す細胞は極めて僅 かであった。これは、DNA strand break がア ポトーシスでみられる double strand break で はなくネクローシスによる single strand break が多発しているのではないかと推察され た。従って、本研究では形態学的なアポトーシ スをアポトーシス陽性細胞の第一の判断基準と し, TdT assay を補助的なものとした。

シスプラチン^{22,23)}の細胞障害作用はDNAの グアニン塩基への結合によるDNA 合成の特異 的阻害によって引き起こされるとされており, 細胞周期上シスプラチンは,G2+M期での細 胞回転をブロックするという報告がある^{24~26)}。 また,これまでにもシスプラチンによりアポ トーシスが誘導されたとの報告がいくつかあ る^{27~31)}。しかし,口腔癌においてシスプラチン がどのように細胞周期に影響を与え,殺細胞効 果を発現するかについての詳細な研究は少な く,これを明らかにすることはシスプラチンの 細胞障害機序を知るうえで非常に重要である。 本研究では、シスプラチン投与後1日目でG2+ M期に細胞集積を認め、2日目ではG0+G1期 に細胞集積を認めた。

一方,細胞周期調節機構はいくつかのチェッ クポイントが存在していると考えられている。 このチェックポイントの概念は,1989年に Hartwell と Weinert によって提示された³²⁾。 これは,細胞周期を進行させるために細胞に備 わっている監視機構である³³⁾。この機構は細胞 が正常な細胞周期進行を妨げられた際,速やか にそれを検知し,特定の位置で細胞周期を停止

させる。このチェックポイントは現在までに4 つの存在が確かめられている。①DNA 障害 チェックポイント、②DNA 複製チェックポイ ント、③形態チェックポイント、④紡錘体形成 チェックポイントである。シスプラチンはこれ らのうち DNA 障害チェックポイントに影響す ると考えられ、その際P53タンパク質が関与す るという報告がある^{34,35)}。チェックポイントで 細胞周期を停止させた後, DNA 障害を受けた 細胞は修復されるか、あるいは修復が不可能な 場合は細胞をアポトーシスに陥らせることによ り、 異常な DNA を複製させないといわれてい る^{36~38)}。本研究でも、アポトーシス細胞は対照 群ではsubG1期にのみしか認められないが、シ スプラチン投与群では、先ずG2+M期に、次い でG0+G1期に細胞集積を認めた後,同細胞周 期にアポトーシス細胞の出現がみられ、細胞周 期調節機構とアポトーシスとの関連が示され た。

本研究では、シスプラチン1.0mg/kg,10.0mg/kg,25.0mg/kgの各投与群において腫瘍増殖の 抑制とAIの増加を認めた。これは、アポトー シス誘導が10mg/kgまでは濃度依存性であるこ とを示していた。また、シスプラチン10.0mg/kg 投与群において1日目、2日目、4日目、6日 目ではAIの増加を認めた。これを各細胞周期 別のAIと比較すると、経日的なAIの増加は 各細胞周期ごとにAIが増加するのではなく、 アポトーシス細胞の認められなかった細胞周期 へのアポトーシス細胞の出現によるものと考え られた。

本研究の結果は、各細胞周期におけるシスプ ラチンの影響と形態学的なアポトーシス細胞の 出現との関連性を示した。現在、アポトーシス と細胞周期との関連性は遺伝子レベルで研究が 進んでいる。従って、今後は各細胞周期におけ る発癌遺伝子や癌抑制遺伝子との関連について のさらなる検討を行い、シスプラチン等の各種 抗癌薬の作用機序を明らかにしていくことで、 癌化学療法における抗癌薬の選択や併用療法の 指標になることが期待される。

結 論

シスプラチン投与後のWHT/Htマウスの扁 平上皮癌細胞におけるアポトーシス細胞出現率 と細胞周期との関連性について検討したとこ ろ,以下の結論を得た。

- 1. シスプラチン投与により誘導された AI は 経日的および濃度依存的に増加した。
- 2. 腫瘍増殖の抑制とそれに伴う AI の増加は, アポトーシスによる腫瘍抑制効果によるもの とみなされた。
- 細胞周期ではG2+M期、G0+G1期の順に 細胞集積を認め、アポトーシス細胞もG2+M 期、G0+G1期の順に出現した。
- 4. 各細胞周期において, AI の経日的な増加は 認められなかった。
- 5. 細胞周期調節機構と AI との関連性が示唆 された。

謝 辞

稿を終えるにあたり,終始ご懇篤な指導と校 閲を賜りました恩師関山三郎教授に深甚なる謝 意を捧げます。また,貴重な器材の使用をご快 諾頂きご懇切な助言を賜りました本学産婦人科 学講座利部輝雄教授に衷心より謝意を捧げま す。さらに本研究の遂行に際しご親切な指導と 鞭撻を頂きました当講座杉山芳樹助教授に深く 感謝するとともに口腔外科学第二講座医局員各 位に心より謝意を表します。また,懇切な実験 手技の指導を下さった本学産婦人科学講座八角 昌子氏に感謝を表します。

本論文の要旨は、1999年10月7日、第44回日 本口腔外科学会総会において発表した。

文 献

- 1) Farber, J. L., Kyle, M. E., and Coleman, J. B. : Mechanisms of cell injury by activated oxygen species. *Lab. Invest.* 62 : 670–679, 1990.
- Farber, J. L.: The role of calcium ions in toxic cell injury. *Environ. Health Pers.* 84: 107-111, 1990.

傑

- 3) Gunji, H., Kharbanda, S., and Kufe, D. : Induction of internucleosomal DNA fragmentation in human myeloid leukemia cells by 1-beta-Darabinofuranosylcytosine. *Cancer Res.* 51 : 741-743, 1991.
- 4) Evans, D. L., and Dive, C. : Effects of cisplatin on the induction of apoptosis in proliferating hepatoma cells and nonproliferating immature thymocytes. *Cancer Res.* 53 : 2133–2139, 1993.
- 5) Ormerod, M. G., O'Neill, C. F., Robertson, D., and Harrap, K. R. : Cisplatin induces apoptosis in a human ovarian carcinoma cell line without concomitant internucleosomal degradation of DNA. *Exp. Cell Res.* 211 : 231–237, 1994.
- 6) Borner, M. M., Myers, C. E., Sartor, O., Sei, Y., Toko, T., Trepel, J. B., and Schneider, E. : Druginduced apoptosis is not necessarily dependent on macromolecular synthesis or proliferation in the p53-negative human prostate cancer cell line PC-3. *Cancer Res.* 55 : 2122–2128, 1995.
- 7) Desjardins L.M., and MacManus J.P. : An adherent cell model to study different stages of apoptosis. *Exp. Cell Res.* 216 : 380–387, 1995.
- 8) Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M.: Wild-type p 53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. *Nature* 352 : 345–347, 1991.
- 9) Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J. Jr. : A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. *Cell* 71 : 587–597, 1992.
- Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. : p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. *Cell* 74 : 957–967, 1993.
- 11) Zhan, Q., Fan, S., Bae, I., Guillouf, C., Liebermann, D. A., O'Connor, P. M., and Fornace, A. J. Jr.: Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. *Oncogene* 9 : 3743–3751, 1994.
- 12) de Stanchina, E., McCurrach, M. E., Zindy, F., Shieh, S. Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J., and Lowe, S. W. : E 1 A signaling to p53 involves the p19 (ARF) tumor suppressor. *Genes & Dev.* 12 : 2434– 2442, 1998.
- 13) Hewitt, H. B., and Sakamoto, K.: The comparative survival of clonogenic cells of a murine epithelioma after irradiation in mice breathing air, oxygen and carbon dioxide, or hyperbaric oxygen. *British Journal of Radiology* 44: 457–463, 1971.
- 14) Povlsen, C. O., and Jacobsen, G. K. : Chemo-

therapy of a human malignant melanoma transplanted in the nude mouse. *Cancer Res.* 35 : 2790 –2796, 1975.

- 15) 長内宏夫:マウス扁平上皮癌におけるシスプラ チン誘導性アポトーシスの基礎的研究,岩医大歯 誌,23:27-37,1998.
- 16) Kerr, J. F., Wyllie, A. H., and Currie. A. R. : Apoptosis:a basic biological phenomenon with wide-ranging implication in tissue kinetics. *Brit. J. Cancer* 26 : 239–257, 1972.
- 17) Kamentsky, L. A., and Kamentsky, L. D.: Microscope-based multiparameter laser scanning cytometer yielding data comparable to flow cytometry data. *Cytometry* 12: 381–387, 1991.
- 18) Murakami, T., Li, X., Gong, J., Bhatia, U., Traganos, F., and Darzynkiewicz, Z. : Induction of apoptosis by 5 -azacytidine: drug concentration-dependent differences in cell cycle specificity. *Cancer Res.* 55 : 3093–3098, 1995.
- 19) Schwartzman, R. A., and Cidlowski, J. A. : Apoptosis:the biochemistry and molecular biology of programmed cell death. *Endocr. Rev.* 14 : 133–151, 1993.
- 20) Wyllie, A. H., Kerr, J. F., and Currie, A. R. : Cell death: the significance of apoptosis. *Int. Rev. Cytol.* 68 : 251–306, 1980.
- MucGee, J. O'D., and Isaacson, P. G. : Oxford textbook of pathology vol 1 principles of pathology. Oxford university press., Oxford, pp147 -148 1992.
- 22) Rosenberg, B., VanCamp, L., and Krigas, T.: Inhibition of cell division in escherichia coli by electorolysis products from a platinum electrode. *Nature* 205: 698–699, 1965.
- 23) Rosenberg, B., VanCamp, L., Trosko, J. E., and Mansour, V. H. : Platinum compounds:a new class of potent antitumour agents. *Nature* 222 : 385-386, 1969.
- 24) Sorenson, C. M., and Eastman, A.: Mechanism of cis-diamminedichloroplatinum (II)-induced cytotoxicity: role of G 2 arrest and DNA doublestrand breaks. *Cancer Res.* 48: 4484–4488, 1988.
- 25) Shinomiya, N., Tsuru, S., Katsura, Y., Sekiguchi I., Suzuki, M., and Nomoto, K. : Increased mitochondrial uptake of rhodamine 123 by CDDP treatment. *Experimental Cell Research* 198 : 159–163, 1992.
- 26) Sherman, S. E., Gibson, D., Wang, A. H., and Lippard, S. J. : X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt (NH 3) 2 {d (pGpG)}]. Science 230 : 412-417, 1985.
- 27) Sorenson, C. M., Barry, M. A., and Eastman, A.
 : Analysis of events associated with cell cycle arrest at G 2 phase and cell death induced by Cisplatin. J. Natl. Cancer Inst. 82 : 749–755, 1990.

- 28) Ormerod, M. G., Orr, R. M., and Peacock, J. H.: The role of apoptosis in cell killing by Cisplatin: a flow cytometric study. *Br. J. Cancer* 69: 93–100, 1994.
- 29) Fan, S., el-Deiry, W. S., Baek, I., Freeman, J., Jondle, D., Bhatia, K., Fornace, A. J. Jr., Magrath, I., Kohn, K. W., and O'Connor, P. M. : p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. *Cancer Res.* 54 : 5824–5830, 1994.
- 30) Dixit, M., Yang, J. L., Poirier, M. C., Price, J. O., Andrews, P. A., and Arteaga, C. L. : Abrogation of Cisplatin-induced programmed cell death in human breast cancer cells by epidermal growth factor antisense RNA. *J. Natl. Cancer Inst.* 89: 365 -373, 1997.
- 31) Gallagher, W. M., Cairney, M., Schott, B., Roninson, I. B., and Brown, R. : Identification of p53 genetic suppressor elements which confer resistance to cisplatin. *Oncogene* 14: 185–193, 1997.
- 32) Hartwell, L. H., and Weinert, T. A. : Checkpoints: controls that ensure the order of cell cycle events. *Science* 246 : 629–634, 1989.

- 33) 野島 博:細胞周期のチェックポイント制御,実 験医学,16:1154-1188,1998.
- 34) Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W.: Participation of p53 protein in the cellular response to DNA damage. *Cancer Res.* 51: 6304–6311, 1991.
- 35) Murray, A., and Hunt, T. : The cell cycle an introduction. Oxford university press. Oxford, pp135–152, 1993.
- 36) Devita, Jr. V. T., and Hellman, S. : Important advances in oncology 1995. J. B. Lippincott Co., Philadelphia, pp33–42. 1995.
- 37) Schulte-Hermann, R., Bursch, W., and Grasl-Kraupp, B. : Bedeutung der Apoptose fur die Tumorentstehung. Verhandlungen der Deutschen Gesellschaft fur Pathologie 78 : 15-21, 1994.
- 38) Potapova, O., Haghighi, A., Bost, F., Liu, C., Birrer, M. J., Gjerset, R., and Mercola, D. : The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin. J. Biol. Chem. 272 : 14041–14044, 1997.