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PDGF・inducedPI3K・mediatedsignaling enhances the 

TGF -~-induced osteogenic difTerentiation of human mesenchymal 

stem cells in a TGF-~-activated MEK・dependentmanner
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Abstract. Tral司剖nsfoωrm

regulatωor of ost句:eogeni必cdωif仔fel陀可官m号訂n此tiationand the platω阜l怜et-derηlved

growtぬhf“acもωor(PDGF) is a chellloat“tr悶actantor lllitωogen of 
ost匂eogeniおcmesenchYlllal cells. However， tJle combined effects 

of these regulators on tJle osteogenic differentiation of lllesen-

chYlllal cells relllains unknown. In tJlIs study， we investigated 
tJle effects of TGF-s and/or PDGF on tJle osteogenic differ-

entiation of human lllesenchylllal stelll cells (hMSCs). The 

TGF-s-induced osteogenic differentiation of UE7T-13 cells， 
a bone lllarrow-derived hMSC line， was lllarkedly enhanced 

by PDGF， altJlOugh PDGF alone did not induce differentiation. 

TGF-s induced extracellular signal-regulated kinase (ERK) 
phosphorylation and PDGF induced Akt phosphorylatioll. 

In addition， the lllitogen-activated protein kinase (MAPK)I 

ERK killase (MEK) inhibitor， U0126， suppressed the osteo-

genic differentiatioll induced by TGF-s alolle. Moreover， 
U0126 completely suppressed the osteogenic differentiatioll 

synergistically induced by TGF-s and PDGF， whereas the 
phosphoinositide-3-killase (PI3K) inhibitor， LY294002， ollly 
partially suppressed this effect These results suggest tJlat the 

enhancemellt of TGF-s-induced osteogenic differentiation 
by PDGF-illduced PI3K/Akt-mediated sigllaling depends on 

TGF-s-illduced MEK activity. Thus， PDGF positively lllodu-

lates the TGF-s-induced osteogellic differentiation of hMSCs 
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IlltroductIon 

Bone fonuation and r官modelingoccur tJlroughout developlllent 

and adult life. The fonuation of new bone is a complex cascade， 

involving cell proliferatioll， osteogenic cell differentiation， 

extracellular lllatrix (ECM) lllaturatioll and matrix lllinelヨliza-

tion. Bone relllodeling depends on osteoblasts (OBs)， osteocytes 

alld osteoclasts (1). Mesenchymal stem cells (MSCs) differen-

tiate into OBs and synthesize and secrete bone matrix， which 

subsequentJy becollles mineralized tissue. Once elllbedded into 

tJle bone ll1atrix， OBs fur出erdifferentiate illtO osteocytes. 

MSCs were first derived frolll bOlle ll1a町owand are charac-

terized by their self-renew司Iability and their capacity to develop 

IIIωa variety of mesenchymal tissues (2-4)， The expallsion of 

human bone lllarrow-derived MSCs (BM-MSCs) in vitro and 
their subsequent autoill1plantation may be used for stem cell 

therapy without the risk of rejection by tJle illlmune syStelll. 

B恥1-MSCsdifferentiate into OBs， chondrocytes and adipo-

cytes (5) and are tJlerefore cOllsider官dthe lllain source of bone 

問generョtionand ぼmodelingduring hOllleostasis (6-9). Much of 

tJlIs process depends on the ability of MSCsωproliferate and 

differentiate under the influence of biologically active molecules 

(i.e.， growth factors) (10-13). The role of growth factors in bone 

repair is widely recognized， particularly for platelet-derived 

growtJl factor (PDGF)， insulin-like growili factor-I (IGF-I)， 

vascular endothelial growth factor (VEGF) and transforming 

growth factor-s (TGF-s)， all of which are inducers， particularly 
in osteoprogenitor cells (14). These growth factors are usually 

sωred in tJle ECM; however， following injury， tJley a隠 actively

I官leasedby the ECM， cells and platelets. 

TGF-s is one of the most abundant growth factors in the 
bone lllatrix (15) and regulates osteoblastic differentiation in 

a variety of ways， such as by stilllulating the proliferation and 
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development of early OBs. although it inhibits their matura-

tion and minerョlization(16). TGF-s is released from the bone 
surface and recruits MSCs to bone刊 sorptivesites. where they 

undergo differentiation into mature OBs. thus coupling bone 

resorption with bone formation (17). TGF-s activates intra-
cellular effectors. such as mitogen-activated protein kinases 

(MAPKs) and Sma-and Mad-related proteins (Smads) (18-20). 

There are at least three distinctly regulated groups of MAPKs: 
extracellular signal-related kinases (ERKs). Jun N-terminal 

kinases (JNKs) and p38 MAPKs (p38). The activation of the 

ERK pathway mediates the differentiation of BM-MSCs and 

that of the pre-adipocyte cellline. 3T3 Ll. into mature adipo-
cytes. It also regulates the proliferation and differentiation 

of bone cells and BM-MSCs during osteogenic differentia-

tion (21). JNK and p38 are activated in human and mouse OBs 

to regulate bone resorption (22.23). 
PDGF is a polypeptide growth factor secreted from 

cytokine-ladell grallules of aggregated platelets early after 

ti ssue injurγ(24.25). PDGF is lllainly produced by platelets 

and has been illlplicated in the repair of tissue dalllage. such 

as fractures (26). PDGF cOllsists of A. B. C alld D isoforms. 
alld forms homo or hetero dimers. such as PDGF-AA or 

PDGF-AB (26). PDGF-BB exhibits the strollgest activity of 

these isofonns (26) and has been approved by the US Food alld 

Drug Admillistratioll (FDA) for the treatment of patients witll 

bOlle defects ill 01'31 alld lllaxillofacial regions (27-30). However. 

the specific molecular mechanisms by which PDGF regulates 

the activity of lllultiple cell types to cOlltrol tissue development 

are not yet fully understood. Much of the research in this area 

has focused on the role of PDGF in controlling tJle vascular-

ization of nascent tissue. fonlling witJlin tJle wOUlld site (31). 

PDGF indirectly regulates bone regeneration by increasing 

tlle expression of angiogenic molecules. such as VEGF (32). 
hepatocytβgrowtJl factor (33) and that of the proinflamlllatory 

cytokine. interleukin-6 (34); VEGF is a particularly important 

molecule in bone regeneration (35). In gelleral. PDGF binding 

leads to autophosphorylatioll on multiple tyrosille residues. 
tllereby activatillg several downstream cascades. such as ERK 

belonging to MAPKs. phosphoinositide-3-kinase (PI3K)/Akt. 
Janus kinase (JAK) and signal transducer and activator of 

transcription (STAT)卵白ways(36.37). Osteogenic progenitor 

cells respond to PDGF ligand-binding by the activation of Src 

tyrosine kinases (38-40) and of the Akt protein kinase and 

Grb2-mediated ERK-signaling (40). ConsequelltJy. PDGF 
illcreases tJle pool of osteogenic cells at tJle injury site. actillg 

as a chelllotactic agent alld lllitogen (41). 

Even though the effects of TGF-s or PDGF alone on the 

osteogenic differelltiatioll of ulldifferentiated mesenchYlllal 

cells have beell reported ill detail (17，40，42). their combilled 
effects still remain unknownωdate. In this study. we investi-

gated tlle osteogenic differentiation of hUlllan MSCs (hMSCs) 

following stimulation WitJl exogenous TGF-s and PDGF. We 
also investigated tJle mechallislllS through which illtracellular 

sigllals induced by TGF-s and/or PDGF control the osteogenic 
differentiation of h恥ISCs.

Materials alld metbods 

Reαgents. Recolllbinant human TGF-s and PDGF. as well 
as tJle MAPK/ERK kinase (MEK) inhibitor. U0126. and tlle 

PI3K illhibitor. LY294002. were purchased frolll Calbiochelll 
(La Jolla. CA， USA). 

Cell cultllre and osteogmic differentiation. The humall 
BM-MSCline. UE7T-13. the lifespall ofwhich wasprolonged by 
infection witll a retrovims ellcoding human papillomavirus E7 

and human telomerase reverse tIヨnscriptase(hTERT) (43，44). 

was purchased frolll the Health Science Research Resources 

Bank (JCRB no. 1154. Japan Health Sciences Foundation， 

Tokyo. Japan). The UE7T-13 cells were cultured in Dulbecco's 

modified Eagle's lllediulll (DMEM; Sigma， St. Louis. MO. 
USA) supplelllellted with 10% fetal boville serUlll (FBS; 

PAA Laboratories. Piscataway. NJ. USA) at 37・Cill a humidi-
fied incubator with all atmosphere of 5% CO~. To illduce 
osteogenic differelltiation， the UE7T-13 cells were cultured in 
24-well culture plates (Nullc. Roskilde. Denmark) containing 
basal osteogenic differentiation lllediulll (BODM) ~α-MEM 

(Sigllla) supplelllellted with 100 llM dexalllethasone (Sigllla)， 
50μg/1ll1 ascorbic acid (Nacalai Tesque. Kyoto. Japan)， 10 lllM 
s-glycerophosphate (Sigma) and 10% FBS (PAA Laboratories)] 

containillg TGF-s and/or PDGF. Half of the medium in each 
dish was changed every 2-3 days. 

Alkaline phosphatase仏LP)staining. The UE7T-13 cells were 
cultured in 24-well plastic culture plates or OsteologicTNdiscs 

(BD Biosciences. Franklin Lakes. NJ. USA) (a proprietary 
hydroxyapatite substitute for bone mineral) containing BODM 

supplemented with TGF-s and/or PDGF for 1 week. The 
surface of the Osteologic cell culture disc is coated with 

calcium phosphate. The cells were then stained with ALP 

using the TRAP/ALP staillillg kit (Wako Pure Chemical 

Industries， Lω.. Osaka， Japan) accordingωthe lllanufacturer's 

IllstructIons. 

Alizarin red stainiug. Confluent UE7T-13 cells were cultured 
ill 24-well plastic culture plates contaillillg BODM supple-

mented with TGF-s and/or PDGF. After 2 weeks. bone matrix 
lllineralizatioll was evaluated by Alizarill red S (Sigllla) 

staining. Alizarin red was extracted by the addition of 10% 

cetylpyridillium chloride (Sigma) in 8 mM  Na~HP04 (Wako 

Pure Chemical) and 1.5 lllM KH!P04 (Wako Pure Chemical 
Industries. Ltd.) while the absorbance was measured on all 

MPR-A4i lllicroplate reader (Tosoh Co.. Tokyo， Japan) at 

540 nm. 

RNA isolation and quantitative RT-PCR (qRT-PCR). 
COllfluent UE7T-13 cells in 24-well plastic culture plates or 

Osteologic discs were cultured ill BODM containillg TGF-s 

and/or PDGF. After 1 week of culture. total RNA was isolated 
using Isogell reagent (Nippon Gene Co.. Lω.， Tokyo. Japan) 
according to the lllanufacturer's instructions. cDNA was 
synthesized from total RNA with the PrimeScript RT reagent 

kit (Takara Bio. Inc.. Shiga. Japan). qRT-PCR was perfonned 

on a Therlllal Cycler Dice Real Time System (Takara Bio. 
Inc.) with SYBR Premix Ex Taq 11 (Takara Bio. Inc.) alld 

specific oligonucleotide primers (presented in Table 1). The 

mRNA expressioll levels of rUllt-related transcription factor 2 

(RUNX2). ALP. liver/bone/kidney (ALPL). collagen. type 1. 
alpha 1 (COLIA)， secreted phosphoprotein 1 (osteopolltin. 

SPPl). integrin -bindillg sialoprotein (bone sialoprotein. IBSP). 
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Table I. Prilller sequences. 

Full name Symbol 

Runt-related transcription factor 2 RUNX2 

A1kaline phosphatase， liver/bone/kidney ALPL 

Collagen， type 1， alpha 1 COLlA 

Secreted phosphoprotein 1 SPPl 

Integrin-binding sialoprotein IBSP 

Bone galllllla-carboxyglutamate (gla) protein BGLAP 

Glyceraldehyde-3 -phosphate dehydrogenase GAPDH 

and bone gamma-carboxyglutamate (gla) protein (osteocalcin， 

BGLAP) were normalized to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH)， and the relative expression levels 

were expressed as the fold change relative to the corresponding 

control. 

"もstemblot allalysis. The UE7T-13 cells were washed twice 
with PBS and then lysed in R1PA buffer (50 mM  Tris-HCl， 

pH 7.2， 150 1l1M NaCl， 1% NP-40， 0.5% sodium deoxycho-

late， and 0.1% SDS) containing protease and phosphatase 

inhibitor cocktails (Sigma). The protein content was llleasured 

with BCA reagent (Pierce Biotechnology， 1nc.， Rockford， 1L， 

USA). Equivalent protein salllples were separated by 10-20% 

SDS-polyacrylalllide gradient gel electrophoresis (SDS-PAGE) 

and transferred onto a polyvinylidene difluoride (PVDF) 

melllbrane (Millipore， Billerica， MA， USA). After blocking 
with 5% non-fat dry milk in TTBS (50 lllM Tris-HCl， pH 

7.2， 150 lllM NaCl， and 0.1% Tween-20)， the lllelllbrane was 

incubated WitJl a prilllary anti-Akt (Cell Signaling Technology， 

1nc.， Danvers， MA， USA)， anti-phospho-Akt (Ser473) (p-Akt， 

Cell Signaling Technology， 1nc.)， anti-p44142 MAPK (ERK1I2， 

Cell Signaling Technology， 1nc.)， anti-phospho-p44/42 MAPK 

(Thr202/Tyr204) (p-ERK， Cell Signaling Technology， 

1nc.) antibodies， and anti-s-actin (clone C4， Santa Cruz 
Biotechnology， Santa Cmz， CA， USA) antibody as tJle loading 

control for normalization. The blots were then incubated with 

ALP-conjugated secondary antibody and developed using tJle 

BC1P/NBT lllelllbrane phosphatase substrate systelll (KPL). 

Densitollletry was perfonned using 1lllageJ software (version 

1.44). Data are expressed as tJle ratio of phosphorylated to total 
1ll01ecular bands. 

Statistica! analysis. Data are presented as the llleans :!: stan-
dard deviation (SD). Statistical analysis was perforllled by 

using the Student's t-test， and values of pく0.05were considered 

to indicate statistically significant differences. 

Primer sequence (5'-3') 

Forward CACTGGCTGCAACAAGA 

Reverse CATTCCGGAGCTCAGCAGAATAA 

Forward GGACCATTCCCACGTCTTCAC 

Reverse CCTTGTAGCCAGGCCCATTG 

FOIward TCTAGACATGTTCAGCTTTGTGGAC 

Reverse TCTGTACGCAGGTGATTGGTG 

Forward ACACATATGATGGCCGAGGTGA 

Reverse TGTGAGGTGATGTCCTCGTCTGTAG 

Forward GGCCACGATATTATCTTTACAAGCA 

Reverse TCAGCCTCAGAGTCTTCATCTTCA 

Forward AGGTGCAGCCTTTGTGTCCA 

Reverse GGCTCCCAGCCATTGATACAG 

Forward GCACCGTCAAGGCTGAGAAC 

Reverse ATGGTGGTGAAGACGCCAGT 

Results 

PDGF lIlarked~y enhances the TGF-s-indllced ECM min.er-
alizatioll in. hMSCs. 1n general， lllesenchylllal cells that 
differentiate into OBs induce the 1l1ineralization of the the 
ECM (45 -47). We investigated tJle TGF-s-lllediated induction 

of the osteogenic differentiation of the BM-MSC cell line， 

UE7T-13， by using Alizarin red staining to assess ECM llliner-

alization. As illustrated in Fig. lA， TGF-s induced lllatrix 
lllineralization in the UE7T-13 cells in a dose-dependent 

lllanner (1.0-5.0 ng/1l11). We then exalllined the synergistic 

effects of PDGF and TGF-s on osteogenic differentiation. 

Alizarin red staining of TGF-s-and PDGF-stilllulated cells 
revealed that the TGF-s (5 ng/1ll1)-induced lllatrix lllineraliza-

tion was enhanced by PDGF (10 ng/llll)， whereas PDGF alone 

did not induce lllinerョlization(Fig. lB). 

TGF-s and PDGF syn.ergistically upreglllate the transcript 
levels of ALPL and lBSP IJL hMSCs. To elucidate the molec-

ular lllechanisllls underlying tJle synergistic effects of TGF-s 

and PDGF on osteogenic differentiation， we investigated the 
transcript expression of osteogenic differentiation markers 

in UE7T-13 cells by qRT-PCR. As shown in Fig. 2B， TGF-s 
alone lllarkedly induced ALPL mRNA expression; PDGF 

alone had no effect on ALPL expression. 1ntriguingly， PDGF 

markedly enhanced the TGF-s-induced upregulation of ALP 

mRNA expression. 1n addition， TGF-s and PDGF greatly 

induced 1BSP expression， although neither regulator alone 
was sufficientωinftuence 1BSP expression (Fig. 2E). These 

regulators， either alone or synergistically， had no effect on 

the transcript expression of other osteogenic differentiation 

marker genes， such as RUNX2， COLlAl， SPPl and BGLAP 
(Fig. 2A， C， D and F， respectively). 

PDGF enhances the TGF-s-induced osteogenic differentia-

tion ofhMSCs 011 a proprietary hydroxyapatite substItllte for 
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Figure 1. PIatelet-derived growth factor (PDGめmarkedlyenhancedthe tl百nsforminggrowth factor-s (TGF-s)ーinducedextracellular lllatrix (ECM) miner-
alization in human lllesench戸llalstem cells (hMSCs); PDGF alone had no effect on cells cultured on plastic culture plates. (A) UE7T-13 cells were cultured in 
plastic culture plates containing basal osteogenic differentiation medium (BODM) supplelll印刷withvarious concentratiollS of TGFや(0.5-5.0ng/llll). 1Wo 
wee氾 laterthey were stained with Alizarin red. (E司UE7下13cells were cultured in BODM containing 5.0 ng/llll TGF-s and/or 10.0 ng/llll PDGF. After:! weeks. 
the bOlle matrix mineralizatioll of the cells was assessed by Alizarin red staining (lower panel). Alizarin red was extracted with 10% cetylpyridiniulll chloride 
and ab哩orbancewas measured at 550 nm (upper panel). Data are presented as the llleans主So.・p<0.05."p<o.m indicate statistifcal significance 

bo1te mineral (Osteologic discs). As shown in Figs. 1 and 2B， 

PDGF enhanced the TGF-s-induced osteogenic differen-

tiation of hMSCs. whereas PDGF alone had no effect on 

differentiation. These results suggest TGF-s is superior to 

PDGF in the hierarchy that mediates the osteogenic differ-

entiation of hMSCs. However， as shown in Fig. 2E， it was 

unc1ear which growth factor is the main regulator of IBSP 

mRNA expression. In order to c1early rank these growth 

factors in the context of promoting OB differentiation， we 

exalllined the mechanisms through which TGF-s and/or 

PDGF affect the differentiation of hMSCs on a proprietary 

hydroxyapatite substitute for bone lllineral (Osteologic discs)， 

instead of the plastic culture plates utilized in Figs. 1 and 2. 

The surface of the Osteolof'ic cell culture disc is coated with -calcium phosphate as described in Materials and methods. 

As shown in Fig. 3A， ALP staining of the UE7T-13 cells 

cultured on Osteologic discs revealed that PDGF cIearly 

enhanced the TGF-s-induced upregulation of ALP expres-

sion， whereas PDGF alone did not. In addition， as shown 

in Fig. 3B and C， qRT-PCR revealed that PDGF clearly 

enhanced the TGF-s-induced upregulation of ALPL and 

IBSP transcript expression， whereas PDGF alone did not. 

Thus， the Osteologic culture systelll c1early delllonstrated 

that TGF-s is superior to PDGF in the regulation of the 

osteogenic differentiation of hMSCs. 

TGF-s upreglllates the PDGF-i1tdllced Akt activity， whereas 

PDGF downreglllates the TGF-s-indllced ERKαctivity. 

In order to identify the signaling pathways activated by 

TGF-s and/or PDGF during the osteogenic differentiation 

of UE7T-13 cells， we evaluated the phosphorylation status 

of the PI3K/Akt-and ERK-mediated pathways. Gharibi etαl 
previously reported that the PDGF BB-induced crosstalk 

between these pathways affects the proliferation and adipo-

genic commitment of hMSCs: PDGF-BB-induced PI3KI 
Akt signaling enhanced the proliferative activity of the 

hMSCs， and PDGF-BB-induced ERK-lllediated signaling 

suppressed the adipogenic differentiation of hMSCs (48). In 

general， cell proliferation is poorly compatible with differerト

tiation and proliferation/differentiation switches have been 

demonstrated in different cell types (49-51). In addition， a 

reciprocal correlation exists between the adipogenetic and 
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naling号nhanc号stra即an鴎sfoαnr削1
dωif行fe釘I符悶e剖叩ntia抗山tionof human mes 号nchyma討1s討temce剖11ぬs(ωhMSCs) in a TGF-s-
activated MEK-dependent manner. UE7Tl3 ceIIs were treated with 5.0 ng/ml 
TGF-s and/or 10，0 ng/ml POGF for:! weeks and ECM mine凶 izationwas 
assessed by Alizarin red staining， The MEK inhibitor， U01:!6 (10.0μM)， and 
the PI3K inhibitor， LY:!9400:! c 0μM)， wo号readded to the cuIture medium 
30 min p1間 tothe addition of TGFやand/orPOGF Oata are presen句das the 
means:!: SO・p<0.05，"p<O，O:! indicate statistical significance. 
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TGF-p 
PDGF 

PDGF-induced PI3K-l1lediαted signαling enhances the 
TGF-s-induced， MEK-dependent osteogenic differentiation 

01 hMSCs. As shown in Fig. 5， TGF-s alone markedly induced 
ECM mineralization in a MEK-dependent manner (Fig. 5; 

lanes 2 and 3); moreover， PDGF clearly enhanced the TGF-s-

induced ECM mineralization (Fig， 5; lane 6)， whereas PDGF 
alone had no effect(Fig. 5; lane 4). The synergistically induced 

ECM minerヨlizationwas completely suppressed by U0126 (a 

MEK inhibitor) (Fig. 5; lane 7) and only partially suppressed 

by LY294002 (a PI3K inhibitor) (Fig. 5; lane 8). The level of 
ECM Illineralization was lower in the culture supplemented 

with TGF-仏PDGFand LY294002 (Fig. 5; lane 8) than in the 
culture supplement怠dwith TGF-s alone (Fig. 5; lane 2)， 

B 

出。
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。

Figur児e4，T百10，削百nsfoαrllll!吟growtぬhf向actoαr-(件似3川(TGF-(伶珍a総ctivat匂esextrac伐倒elllぬ凶1盟剖1Iars凱Ig削 -
I児号gul拘at，旬edk組inase(ERK) but noωtAk隙t;platelet-derived growth factor (POGF) 
activates Akt but not ERK UE7T-13 ce11s cultured in 24-weII plastic culture 
plates containing growth medium wer号serum-starvedovernight， then stimu-
lated with 5.0 ng/mI TGF-s and/or 10，0 ng/llll POGF (A) Phosphorylation 
status was analyzed by western blot analysis， (8) Oensitometry was perform号d
with ImageJ softwar色 Oataare expressed as the 1atio of the phosphorylated to 
totallllolecular bands， Oata are presented as the lllean :!: SO・p<0，05."p<O，O:! 
indicate statistical signi ficance. 

Discussioll 

TGF-s is crucial for connective tissue regeneration and bone 

relllodeling， as delllonstrated by several in vivo and in vitro 
studies. It affects osteogenic differentiation and bone forma-

tion (55-59) and increases the mRNA levels of osteogenic 

differentiation markers and ALP activity in Illurine bone 

marrow MSCs (57)， In this study， we investigated whether 
TGF-s promotes the osteogenic differentiation of the human 

bone Illarrow-derived MSC line. UE7T-13. Our results 

demonstrated that TGF-s induced the osteogenic differentia-

tion of UE7T-13 in a dose-dependent Illanner (1.0-5.0 ng/ml) 

(Fig. 1A)， Thus， we focused on the synergistic effects of 

multiple growth factors on the osteogenic differentiation of 

MSCs. 

PDGF is Illainly produced by platelets and has tissue repair 

functions， such as fracture repair (26). In addition， PDGF is 

a chellloattractant or mitogen of osteogenic Illesenchymal 

cells (41)， and does not seem to directly affect the osteogenic 

differentiation of MSCs， As shown in Fig， 1B， PDGF alone 

did not induce ECM Illinerョlizationin the UE7T-13 cells: 

osteogenetic differentiation of undifferentiated mesenchymal 

cells (52-54). Thus， the crosstalk between the PI3K/Akt-and 
ERK-mediated pathways appears to affect the osteogenic 

COllllllitrl1ent of hMSCs. In our study， ERK phosphorylation 

was upregulated by stilllulation with TGF-s alone， but Akt 

phosphorylation was unaffected (Fig. 4)， By contrast， Akt 

phosphorγlation was upregulated by stimulation with PDGF 

alone， but ERK phosphorylation was not. The phosphoryla-

tion of both ERK and Akt was detected after co-stimulation 

of PDGF and TGF-s. Notably， the c01l1bined stimulation of 

TGF-s and PDGF strongly induced Akt phosphorylation 

(Fig， 4B; bar graph on upper panel， lanes 10-13)， whereas 

PDGF alone only 1l10derate induced Akt phosphorylation 

(Fig， 4B; bar graph on upper panel， lanes 2-5)， By contrast， 

TGF-s alone markedly induced ERK phosphorylation 

(Fig 4B; bar graph onlower panel， lanes 8 and 9)， whereas the 

c01l1bination of TGF-s and PDGF moderately induced ERK 

phosphorylation (Fig 4B; bar graph on lower panel， lanes 12 

and 13). No phosphorylation of Smad2/3 was detected， 

although it is one of the major pathways of TGF-s stimula-

tion in these cells (data not shown)， 
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however. PDGF markedly enhanced the TGF-s-induced ECM 
mlllerョlization.

We also investigated the synergistic effects of TGF-s and 

PDGF on the mRNA expression of osteogenic differentiation 
marker genes. qRT-PCR revealed that t11e trョnscriptexpression 

of ALPL， a mineralization-associated enzyme， was increased 

by stimulation wit11 TGF-s alone (Fig. 2B). PDGF markedly 

enhanced t11e TGF-s induction of ALPL， whereas PDGF alone 

had no effect. The TGF-s-induced ALPL expression was 
similarly and great1y increased by PDGF stimulation， whe問as

PDGF alone had no effect (data not shown). It is now well 

established t11at osteogenic differentiation is marked by sequen-

tial stages of cellular proliferation and ECM maturation (60). 

ALPL expression is a transient early marker of osteogenic 

differentiation in MSCs， peaking at the end of the prolifera-

tive stage before ECM maturation (61). Therefore， our findings 

suggest that the PDGF support of TGF-s-induced osteogenic 
differ可mtiationmay be important during the early stages of t11e 

osteogenesis of MSCs. 
IBSP expression is restricted to minerョlizedconnective 

tissues (62). IBSP is a phosphorylated， sulfated glycopro-

tein that represents one of the major non-collagenous ECM 

proteins associated wit11 mineralized tissues (63-65). A high 

expression of IBSP coincides with de novo bone fOl'llla-
tion (62). IBSP is primarily expressed by mature OBs and 

osteoclasts， as well as by hypertrophic chondrocytes (66). 

We previously reported that OB-like SaOS-2 cells have an 

increased expression of IBSP on titanium surfaces coated 
with hydroxyapatite (67). Thus， the expression of IBSP is a 

useful indicator of osteogenic differentiation. IBSP expression 

occurs at the middle-to-Iate-stages of osteogenic differen-

tiation of undifferentiated mesenchymal cells (68). In our 

study， IBSP mRNA expression was detected only in cultures 

containing both TGF-s and PDGF， but was not detected in the 

cultures containing TGF-s or PDGF alone (Fig. 2E). The bone 
surface is comprised of hydroxyapatite， a calcium phosphate 

mineral， on which MSCs differentiate into OBs; this of course 

differs significantly from a polystyrene culture dish surface. 

Therefore， we examined the osteogenic response of hMSCs to 

TGF-s and/or PDGF in cultures grown on Osteologic discs， 
a proprietary hydroxyapatite substitute. As shown in Fig. 3C， 

TGF-s alone markedly induced IBSP mRNA expression in 
the UE7T-13 cells cultured on Osteologic culture discs. In 

addition， PDGF clearly enhanced the TGF-s-induced IBSP 
mRNA expression， whereas PDGF alone had no effecton IBSP 

in this culture system. ALP staining and qRT-PCR revealed 

tllat PDGF clearly enhanced the TGF-s-induced upregulation 
of ALP protein and ALPL mRNA expression; PDGF alone 

had no effect (Fig. 3A and B). Thus， the Osteologic culture 

system demonstrated that TGF-s is superior to PDGF in the 
osteogenic differentiation of hMSCs. The supportive effect 

of PDGF seems to occur during the early stage (for ALPL 

induction) to late stage (for IBSP induction) of osteogenic 

differentiation. 

In order to clarify the intracellular signaling pathways 

that mediate the interaction between PDGF and TGF-s in 

tlle induction of the osteogenic differentiation of MSCs， we 
evaluated tlle phosphOIγlation status of the PI3K/Akt and ERK 

pathways. The MEK inhibitor， U0126， completely suppressed 

the TGF-s-induced ECM minerョlizationin the UE7T-13 cell 

culture (Fig. 5; lane 3); PDGF alone did not promote osteogenic 

activity (Fig. 5; lane 4)， but enhanced the TGF-s-induced ECM 
mlllerョlization(Fig. 5; lane 6). This synergistic promotion of 

ECM mineralization was completely suppressed by U0126 

(Fig. 5; lane 7)， strongly suggesting tllat PDGF enhances the 

TGF-s-induced osteogenic differentiation of hMSCs in a 

TGF-s-activated MEK-dependent manner. In addition， ilie 
synergistic differentiation of hMSCs by both factors was 

partially suppressed by the PI3K inhibitor， LY294002 (Fig. 5; 
lane 8). Taken togetJler， our results indica総 tllatPDGF-induced 

PI3K-mediated signaling enhances the TGF-s-induced 
osteogenic differentiation of hMSCs in a TGF-s-activated 
MEK-dependent manner. Notably， the level of ECM miner-

alization in the presence of TGF-仏PDGFand LY294002 
(Fig. 5; lane 8) was markedly lower than tllat in the cultures 

Wit11 TGF-s alone (Fig. 5; lane 2). As described above， PDGF 
inhibits the TGF-s-induced MEK activity (Fig. 4B: bar graph 

on lower panel， lanes 12 and 13)， whereas TGF-s enhances 
PDGF-induced Akt activity (Fig. 4B: bar graph on upper panel， 

lanes 10-13). These results suggest that ECM mineraliza-

tion may be predominantly induced by PI3K/Akt-mediated 
signaling than by MEK/ERK-mediated signaling in the pres-

ence of boili factors. 

Thus， it can be concluded that PDGF-stimulated PI3K/ 

Akt-mediated signaling enhances the TGF-s-induced osteo-
genic differentiation of hMSCs in a MEK/ERK-dependent 

manner. The combination of PDGF-activated PI3K/Akt and 

TGF-s-activated MEK mediates osteogenic differentiation， 
which is important for optimizing the potential therapeutic 

use of hMSCs for bone formation. Our findings provide 

insight into the establishment of novel therapeutic methods 

for bone formation by hMSCs. 
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