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Abstract

A direct-conversion silicon X-ray diode (Si-XD) is very useful for detecting low-dose-rate X-rays. The Si-
XD is a selected high-sensitivity Si photodiode for detecting X-rays. In this experiment, the Si-XD is
connected to an X-ray detecting module through a 5.0m coaxial cable. The photocurrents flowing
through the Si-XD are converted into voltages and amplified using current-voltage (1-V) and voltage-
voltage (V-V) amplifiers in the module. At a constant tube current of 0.8 mA, the output voltage
increased with increasing tube voltage. The output voltage was proportional to the tube current at a
tube voltage of 80 kV.
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1. Introduction

To perform molecular imaging using X-rays, we developed several photon-counting energy-
dispersive X-ray computed tomography (ED-CT) systems.' "' In the ED-CT systerns, we usually used
cadmium telluride (CdTe) detectors with an energy resolution of 1% at 122keV to disperse photon

51

energy. Subsequently, 2-keV-width iodine K-edge CT was performed using s silicon PIN diode,”’ and
blood vessels were observed at high contrast.

Recently, we have found a high-sensitivity silicon X-ray diode (Si-XD)" 7' with a ceramic substrate,
and a high-sensitivity CT system has been developed using a direct-conversion Si-XD without
scintillators. In addition, gadolinium K-edge imaging has also been carried out utilizing an ED-CT
system with the Si-XD by determining threshold photon energy.

Using the 5i-XD in conjunction with an X-ray detecting module, although low-dose-rate X-rays can
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Fig. 1. Block diagram for detecting low-dose-rate X-rays using a Si-XD, a 5.0-m coaxial cable,
an X-ray detecting module, and an X-ray generator. The Si-XD is placed 1.0m from
the X-ray source, and the output voltage is measured using a digital voltage meter
with an integrator.

5.0-m coaxial cable

AC adaptor

Fig. 2. Experimental setup for detecting X-rays.

be detected, we have to use a long coaxial cable between the Si-XD and the module to construct a new
module consisting of an analog digital converter (ADC) and amplifiers. Therefore, we have to measure
the output voltage when a Si-XD is connected to the module using the long cable. Therefore, we

constructed an experimental setup using the long cable and measured X-ray sensitivity of the Si-XD.

2. Experimental methods
2.1. Low-dose-rate X-ray detection
Figure 1 shows a block diagram for detecting low-dose-rate X-rays using a Si-XD (S1087-01,

Hamamatsu). Using the Si-XD detector, X-ray photons are detected directly by the light receiving
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Fig. 3. Circuit diagrams of I-V and V-V amplifiers in the X-ray detecting module.

surface of 1.3 x 1.3mm?, and the detector is shielded using an aluminum (Al) case with a 25-ym-thick
Al window and a BNC connector. Subsequently, the detector is connected to an X-ray detecting module
through a 5.0-m-length coaxial cable (Fig.2), and the output is measured using a digital voltage meter

and a 4.7-s-time-constant integrator for voltage smoothing.

2.2. X-ray detecting module

In the module, the photocurrents flowing through the Si-PIN are converted into voltages and
amplified using current-voltage (I-V) and voltage-voltage (V-V) amplifiers, and the output from a small
connector (ERA.00.250.CTL, Lemo) is measured using a digital voltage meter. To construct low-noise
high-sensitivity amplifiers, a low-ripple smoothing circuit for an alternating current (AC) adopter is
necessary.

The main circuit diagrams of the X-ray detecting module are shown in Fig. 3. The photocurrents
are converted into voltages using the inverse I-V amplifier with a 2-fA-bias 2-channel operational
amplifier (LMC662, National Semiconductor). The V-V amplifier utilizes the second channel of LMC662
with a non-inverse amplifying circuit. The gain of the V-V amplifier increases with increasing resistance

in a B0k Q variable resistor.
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Fig. 4. X-ray dose rate measured using an ionization chamber placed 1.0 m from the X-
ray source. (a) Tube voltage dependence at a tube current of (.8 mA, and (b)
tube current dependence at a tube voltage of 50 kV,

3. Results
3.1. X-ray dose rate

The measurement of X-ray dose rate is very important because the relative sensitivities of the
detectors are roughly proportional to the dose rate. The X-ray dose rate from the X-ray generator was
measured using an ionization chamber (RAMTEC 1000 plus, Toyo Medic) without filtration (Fig.4). The
chamber was placed 1.0 m from the X-ray source. At a constant tube current of 0.8 mA, the X-ray dose
rate increased with increasing tube wvoltage [Fig.4(a)]. On the other hand, the dose rate was
proportional to the tube current at a constant tube voltage of 80 kV [Fig. 4(b)]. At a tube voltage of 80
kV and a current of 0.8 mA, the X-ray dose rate was 53.7 uGy/s.
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Fig. 5. Output voltages from the module. (a) Variations with the tube voltage at a
tube current of 0.8 maA, and (b) variations with the tube current at a tube
voltage of 80kV.

3.2, Module output
Figure5 shows the output voltages from the Si-XD detector measured using the X-ray detecting
module. At a tube current of 0.8 mA, the output increased with increasing tube voltage [Fig.5(a)]. As

shown in Fig. 5(b), the output voltage was in proportion to the tube current at a tube voltage of 80 kV.

4. Discussion and conclusions

We constructed a low-dose-rate low-noise X-ray detecting module for semiconductor diodes, and
this module with an ADC and a tablet personal computer will be applied soon to a compact X-ray
dosimeter. In particular, the Si-XD was connected to the X-ray detecting module using a 5.0-m-length

coaxial cable, since we had to measure output voltages using the cable.
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In the former experiment, the Si-XD was connected directly to the module. In the near future, the

X-ray detecting module consisting of an ADC and the two amplifiers would be developed to measure X-

ray dose to avoid radiation exposure for observers.
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