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Abstract 

Purpose: To examine whether astaxanthin (AST) prevent the cataract formation 

induced by glucocorticoid in chick embryo.   

Materials and Methods: Hydrocortisone hemisuccinate sodium (HC) (0.5 μmol 

/ egg) was administered directly into the air chamber in the egg shell of chick 

embryo day 15.  The eggs were then kept in an incubator at same conditions 

and administered 100 μL of 50 (HC + AST50 group), 80 (HC + AST80 group), 

100 (HC + AST100 group) mg/ml of AST solutions dissolved in dimethyl 

sulfoxide (DMSO) 3 hr after administration of HC.  In addition, non-HC treated 

group (treated with physiological saline without HC and 100μL of DMSO), 

HC-alone group (treated with 0.5 μmol of HC and 100μL of DMSO), and AST100 

group (treated with physiological saline without HC and 100μL of DMSO) were 

also incorporated.  After 48 hr of treatment, lenses were removed from embryo 
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and classified into five stages according to developed opacity.  The amounts of 

reduced glutathione in the lenses and the blood glucose levels were measured.   

Results: The average scores of lens opacitiy were 2.63 ± 1.02 (HC-alone), 2.78 

± 0.97 nmol/lens (HC + AST50), 2.22 ± 1.20 nmol/lens (HC + AST80), and 1.84 ± 

0.83 (HC + AST100; p < 0.05) respectively.  Administration of AST decreased 

the lens opacity dose-dependently.  The amounts of reduced glutathione in 

lenses were 11.6 ± 2.8 nmol/lens (HC-alone), 11.3 ± 2.7 nmol/lens (HC + AST50), 

13.4 ± 2.4 nmol/lens (HC + AST80), and 13.7 ± 3.1 nmol/lens (HC + AST100; p < 

0.05) respectively.  Higher levels of AST prevented loss of reduced glutathione 

from the lens. 

Conclusion: These findings support that AST protects glucocorticoid-induced 

cataract in chick embryo.   
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Introduction 

 Cataract development affects the opacity of the ocular lens, is associated with 

reduced visual acuity, and can be caused by various factors, such as aging, 

diabetes mellitus, use of steroids, and trauma.  While patients with cataract in 

developed countries can avail of surgical treatment that can improve visual 

acuity, patients in developing countries may not have access to such treatments, 

and in many, the condition progresses to blindness.  Thus, cataracts still remain 

the leading cause of blindness in the world.1  

 According to recent epidemiological studies, exposure to ultraviolet rays,2,3 
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smoking,4-9 and insufficient vitamin C/E10,11 intake are risk factors for developing 

cataract, while oxidative stress is also known to be involved in pathogenesis of 

the disease.  Since oxidative stress develops when the production of reactive 

oxygen species (ROS) overwhelms antioxidant defenses,12 it is thought that 

antioxidants may control cataract development by scavenging ROS, thereby 

decreasing oxidative stress.   

 Astaxanthin (AST) is one of the most common xanthophylls found in the red 

pigment of crustacean shells, salmon, and asteroideans.13,14  AST has several 

biological actions, including antioxidant,15-18 anti-inflammatory,19-22 anti-tumor,23 

and anti-diabetic activities.24  Indeed, AST appears to be a more powerful 

antioxidant than either β-carotene or α-tocopherol,25,26 and as a result of this 

strong antioxidant activity, it may be useful in controlling cataract development.   

The chick embryo model of steroid-induced cataract is one of the best 

established animal models of the disease in vivo.27  In this model, a white ring 

develops around the periphery of the lens nucleus within 20 hr after injection of 

HC (a representative glucocorticoid) into the fertilized egg (15 days after the egg 

is laid).  Within 48 hr after injection, the lens nucleus becomes opaque.  

According to previous studies, lens opacity is not attributable to local 

glucocorticoid effects,28 but rather to the stimulation of hepatic peroxidation 

reactions and elevations in lipid peroxide levels. 29 Lipid peroxides then enter the 

lens via the circulation and aqueous fluid to induce oxidative stress.30  When 

the oxidative stress levels exceed the inherent antioxidant potential of the lens, 

lens opacity may develop.  Furthermore, glutathione levels in the lens decrease, 

which enhances the development of opacity.  Therefore, the chick embryo 
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model of steroid-induced cataract formation is considered to be an excellent 

experimental model that is easy to develop, readily enables drug treatment, and 

is useful for screening drugs with antioxidant activity.  To date, several 

antioxidant substances, such as vitamin C,31,32 pyrroloquinoline quinone,33 

tiopronine,33,34 and cysteamine33,35 have been reported to suppress cataract 

formation in this model.   

In the present study, we used the chick embryo model of steroid-induced 

cataract formation to evaluate the protective effects of AST.    

 

Materials and Methods 

Establishment of a chick embryo model of steroid-induced cataract 

Chick embryos were treated in accordance with the ARVO Statement for the 

Use of Animals in Ophthalmic and Vision Research.  Based on a method 

described previously,36 fertilized eggs laid by hens were incubated at a 

temperature of 37°C and relative humidity of 68%.  On Day 15 (Day 1 = day of 

incubation), HC (Sigma-Aldrich, St. Louis, MO) was injected at a dose of 0.5 

μmol/egg into the air chamber of each fertilized chicken egg to establish chick 

embryo models of steroid-induced cataract.   

 

Administration of AST 

AST was purchased from Wako Pure Chemical Industries (Osaka, Japan).  

AST was dissolved in dimethyl sulfoxide (DMSO) (Wako Pure Chemical 

Industries, Osaka, Japan) at the following concentrations: 50 (HC + AST50 

group; n = 9), 80 (HC + AST80 group; n = 9), and 100 (HC + AST100 group; n = 
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19) mg/ml.  AST solution was added to the fertilized chicken eggs at a volume 

of 100 μL at 3 hr after the injection of HC.  In addition, non-HC group (treated 

with physiological saline without HC and 100μL of DMSO; n = 16), HC-alone 

group (treated with 0.5 μmol of HC and 100μL of DMSO; n = 16), and AST100 

group (treated with physiological saline without HC and 100μL of 100 mg/ml 

AST; n = 16) were also incorporated.   

 

Evaluation of lens opacity 

Autopsy examination of each embryo was carried out 48 hr after the HC 

treatment.  The chick embryo was removed from the egg, followed by incision 

of the corneal limbus and removal of the lens.  The removed lens was observed 

macroscopically, with the severity of the opacity being scored on a 5-grade 

scale: I, no lens opacity; II, faint white ring in the periphery of the lens nucleus; III, 

clear white ring in the periphery of the lens nucleus; IV, opacity of the lens 

nucleus not spreading to the center of the nucleus; V, opacity of the lens nucleus 

spreading to the center of the nucleus as described previously.37   

 

Measurement of the reduced glutathione levels in the lens 

The removed lens was immediately frozen at -80°C and stored at this 

temperature until the measurement of the reduced glutathione level.  Two 

lenses from each chick embryo served as one sample.  The sample was taken 

out of the deep freezer and bathed in cool distilled water (0.4 ml), followed by 

ultrasonic crushing within ice.  The crushed sample was immediately mixed 

with 0.1 ml of 20% cooled trichloroacetic acid.  The mixture was centrifuged at 
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10,000 rpm for 5 minutes.  The supernatant (100 μl) was harvested and applied 

to a 96-well microplate. 1M Tris buffer (pH 8, 95 μl) and 5 mM 

5,5’-diobis(2-nitrobenzoic acid) dissolved in methanol (5 μL) were added to each 

well, followed by 15-minutes’ incubation at room temperature.  Absorbance at 

415 nm was then measured.  The microplate was treated with cysteine (1, 2, 5 

and 10 nmol/well) in the same way, and the data from these microplates were 

used to construct a calibration curve.   

 

Measurement of the blood sugar level  

Blood was sampled from each embryo 48 hr after the HC treatment, and blood 

sugar level was measured with BREEZE 2 (Bayer, Indiana, USA).   

 

Statistical analysis 

The data is presented as the means ± SD.  Mann-Whitney U test was used for 

comparisons of lens opacity.  One-way ANOVA and Fisher's least significant 

difference as post hoc test were used for comparisons of reduced glutathione 

levels in the lens.  A p < 0.05 was regarded as indicating statistical significance.  

The statistical analysis was performed with SPSS software version 20 (SPSS Inc, 

Chicago, IL).   

 

Results 

Lens opacity 

No lens opacity was noted in the non-HC group and in the AST100 group. HC 

treatment induced lens opacity.  The lens opacity scores more than score III 
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was seen in 63 % (HC-alone), 67 % (HC + AST50), 33 % (HC + AST80), and 

26 % (HC + AST100) respectively.  The score for lens opacitiy at 48 hr after the 

HC treatment was significantly lower in the HC + AST100 group (1.84 ± 0.83, p = 

0.04) than in the HC-alone group (2.63 ± 1.02) (Table 1).  Thus, AST 

suppressed partially the HC-induced cataract formation in a dose dependent 

manner.   

 

Reduced glutathione levels in the lens 

The lens glutathione levels were 15.1 ± 0.7 nmol/lens in the non-HC group and 

significantly lower in the HC-alone group (11.6 ± 2.8 nmol/lens, p < 0.001). The 

amounts of reduced glutathione in lenses were 11.3 ± 2.7 nmol/lens (HC + 

AST50), 13.4 ± 2.4 nmol/lens (HC + AST80), 13.7 ± 3.1 nmol/lens (HC + 

AST100; p < 0.05), and 16.4 ± 2.6 nmol/lens (AST100) respectively (Figure 1).  

Thus, AST recovered partially the HC-induced reduction in the lens glutathione 

level dose-dependently.   

 

Blood glucose level 

The blood glucose levels were 220 ± 19 mg/dl in the non-HC group and 

significantly higher in the HC-alone group (308 ± 38 mg/dl, p < 0.001).  The 

blood glucose levels were 220 ± 36 mg/dl in the AST100 group and 312 ± 45 

mg/dl in the HC + AST100 group.  No significant difference was detected both 

between the non-HC group and the AST100 group, and between the HC-alone 

group and the HC + AST100 group (Figure 2).  AST did not affect the serum 

glucose level in the embryo with or without treatment of HC.   



 

8 
 

 

Discussions 

In this study, we examined whether AST prevents the cataract formation, using 

a steroid-induced cataract model in the chick embryo.  To date, there are two 

studies reporting that AST prevented cataracts.  One reported that cataract 

formation was prevented by administration of AST in Atlantic salmon.  The 

authors, however, could not detect increase of lens GST in the fishes treated 

with AST and could not indicate that AST suppressed cataract related to the 

anti-oxidant defense of lens.38  The other reported that selenite-induced 

cataractogenesis was prevented to a certain degree by oral administration of 

AST.  This prevention may not be due to an anti-oxidant activity of AST but be 

due to a direct interaction of AST with selenite.39  In the present study, 

administration of AST to a chick embryo model of steroid-induced cataract 

resulted in significant suppression of HC-induced lens opacity.  Furthermore, 

treatment with AST also significantly suppressed reduction of the lens 

glutathione level, suggesting that the effect of AST in suppressing lens opacity 

involved reduction of oxidative stress.   

Whereas, in an ultraviolet-induced cataract model, AST 0.1% eye drops was 

reported to have showed no preventive effects on lens opacification.40  In our 

experiments, AST was administered to chicken eggs weighing about 60 g at the 

maximum dose of 100 μg, i.e., at a relatively high dose of 1.67 mg/kg.  Thus, a 

sufficient dose of AST may be effective for prevention of cataracts.   

In chick embryo HC enhances not only hepatic peroxidation reaction but also 

hepatic gluconeogenesis,41 and insulin was reported to suppress cataract 
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formation in this model.42  AST did not affect blood glucose levels in this study, 

although some researchers reported that AST increased the effect of insulin, 

thereby increasing glucose uptake into cells.43  Therefore, in this study AST 

suppressed cataract formation not by AST’s effect on sugar metabolism.  And 

the present dose of AST might have been too low to affect sugar metabolism.  

More extensive studies using higher dose of AST seem to be needed.   

Oral administration of AST reportedly increased the AST levels in the anterior 

chamber, resulting in an increase in antioxidant potential.44  Thus, it may be 

possible that AST injected into the air chamber of a chicken egg and uptaken 

into the blood could have passed through a barrier into the eye, having exerted 

antioxidant actions.  But, it is not clear whether AST acted in the eye, since AST 

levels were not determined in the eye in this study.   

DMSO was used as a solvent of AST in this experiment.  In the previous 

experiments with the same model, administration of HC 0.25 nmol/egg caused 

lens opacity scores to be IV or more in more than 90% of chicken embryos.38  

Whereas, in this experiment, HC 0.50 nmol/egg caused lens opacity scores to 

be IV or more in only 30% of eggs.  It was reported that DMSO has 

antioxidant45 and cytoprotective effects.46  One of the reasons for this may be 

due to the suppression of lens opacification by DMSO.  Since DMSO was 

administered in both the AST group and the control group at the same amount, 

suppression of lens opacification by DMSO is considered to be the same in the 

two groups.  Therefore, the actual effect of AST must be the difference in the 

effects between the AST group and the control group.  Moreover, the 

steroid-induced cataract model in the chick embryo can determine the 
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antioxidant effect of a poorly-water soluble substance by dissolving it in DMSO 

like in this study.  This model is expected to be widely used for investigation of 

various substances.   

 In the present study, administration of AST to a chick embryo model of 

steroid-induced cataract resulted in significant suppression of HC-induced lens 

opacity and significant recover of the lens glutathione level, suggesting that the 

effect of AST in suppressing lens opacity involved reduction of oxidative stress.   
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Figure legends 

Figure 1: Effect of HC and AST on the GSH in the lens 

HC decreased lenticular GSH level from 15.1 ± 0.7 nmol/lens (non-HC) to 11.6 ± 

2.8 nmol/lens (HC-alone).  This decrease was partially recoverd by 

administration AST.  The amounts of GSH in lenses were 11.3 ± 2.7 nmol/lens 

(HC + AST50), 13.4 ± 2.4 nmol/lens (HC + AST80), 13.7 ± 3.1 nmol/lens (HC + 

AST100; p < 0.05), and 16.4 ± 2.6 nmol/lens (AST100) respectively.  *: p <0.01 

vs. non-HC, #: p <0.05 vs. HC-alone (Fisher's least significant difference).   

 

Figure 2: Effect of HC and AST on the blood glucose level 

HC treatment increased the blood glucose level from 220 ± 19 mg/dl (n = 8) to 

308 ± 38 mg/dl (n = 11).  The blood sugar levels were 220 ± 19 mg/dl in the 

AST100 group (n = 11) and 308 ± 38 mg/dl in the HC + AST100 group (n =11).  

Significant differences were detected between all groups, except between the 

non-HC group and the AST100 group and between the HC-alone group and the 

HC + AST100 group (Fisher's protected least significant difference).   
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The amounts of GSH in lenses were 11.3 ± 2.7 nmol/lens (HC + AST50), 13.4 ± 2.4 
nmol/lens (HC + AST80), 13.7 ± 3.1 nmol/lens (HC + AST100; p < 0.05), and 16.4 ± 
2.6 nmol/lens (AST100) respectively.  *: p <0.01 vs. non-HC, #: p <0.05 vs. HC-alone 
(Fisher's least significant difference).   
 
Figure 2: Effect of HC and AST on the blood glucose level 
HC treatment increased the blood glucose level from 220 ± 19 mg/dl (n = 8) to 308 ± 38 
mg/dl (n = 11).  The blood sugar levels were 220 ± 19 mg/dl in the AST100 group (n = 
11) and 308 ± 38 mg/dl in the HC + AST100 group (n =11).  Significant differences 
were detected between all groups, except between the non-HC group and the AST100 
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least significant difference).   







Table 1: Incidence of cataract in HC-treated developing chick embryos after AST administration 

 
  Stage of Lenses at 48 hours after HC Treatment 

 
I II III IV – V Average 

non-HC (n = 16) 100 0 0 0 1 

AST100 (n = 16) 100 0 0 0 1 

HC-alone (n = 16) 19 19 44 19 2.63 ± 1.02* 

HC+AST50 (n = 9) 11 22 44 22 2.78 ± 0.97* 

HC+AST80 (n = 9) 33 33 11 22 2.22 ± 1.20* 

HC+AST100 (n = 19) 42 32 26 0 1.84 ± 0.83*, # 

HC induced cataract formation.  This cataract formation was partially inhibited by administration of AST.  Data are  
percentages in parentheses.  *: p <0.01 vs. non-HC, #: p <0.05 vs. HC-alone (Mann-Whitney U test).   
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