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Response to ATP is accompanied by a Ca*" influx via
P2X purinoceptors in the coronary arterioles of golden

hamsters®

Makoto Matsuura, Tomoyuki Saino, Yoh-ichi Satoh

Department of Cell Biology and Neuroanatomy, Iwate Medical University, Morioka, Japan

Summary. In the vascular wall, adenosine-5'-triphosphate
(ATP) released along with noradrenaline from sympathetic
nerve terminals is considered to play an important role in
controlling intracellular calcium ion ([Ca®*'];) levels in arter-
ies. The present study examined how vascular smooth mus-
cle cells in coronary arterioles respond to ATP in relation to
[Ca®**]; dynamics. For this purpose, the dynamics of [Ca’*];
in the coronary arterioles of golden hamsters was examined
by real-time laser scanning confocal microscopy. This tech-
nique enabled the visualization of [Ca®"]; changes in
response to ATP in the intact coronary arterioles, the ultra-
structure of which was well preserved. It was shown that an
increase in [Ca’’]; in the arteriole smooth muscle cells was
elicited by ATP. While P1 purinoceptor agonists have no
effect on this process, P2 purinoceptor agonists were found
to induce a [Ca’*]; increase in the smooth muscle cells.
Suramin (an antagonist of P2X and P2Y receptors) com-
pletely inhibited ATP-induced [Ca’*]; dynamics, but reac-
tive blue 2 (a P2Y receptor antagonist) did not. Uridine-5'-
triphosphate (a P2Y receptor agonist) had no effect on
[Ca®*];, but a, - methylene ATP (a P2X receptor agonist)
caused a strong increase in [Ca’"];. We conclude that
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smooth muscle cells of the hamster coronary arterioles pos-
sess P2X, but not P1 or P2Y purinoceptors. The smooth
muscle cells probably respond to extracellular ATP via P2X
purinoceptors, resulting in the contraction of the coronary
arterioles.

Introduction

Adenosine 5'-triphosphate (ATP), a ubiquitous compound,
can be found in extracellular spaces as a neurotransmitter
or co-transmitter that is released from nerve endings (Burn-
stock, 1972; Gordon, 1986; von Kiigelgen and Starke,
1991; Dubyak and El-Moatassim, 1993; Burnstock, 1995).
ATP is also known to leak from injured or stimulated cells
(Burnstock, 1996; McConalogue et al., 1996). ATP is
involved in specific extracellular signaling actions regulating
a variety of cellular functions (e.g. development, prolifera-
tion, and differentiation) (Abbracchio and Burnstock, 1998).

Purinergic receptors are important when considering
these signaling actions. They can be divided into two main
categories: Pl purinoceptors (adenosine receptors), and P2
purinoceptors (ATP receptors) (Burnstock, 1978). P2
purinoceptors can be grouped into different two subfami-
lies: P2X and P2Y. Since P2X purinoceptors are ligand-
gated ion channels, an increase in intracellular calcium ion
([Ca**];) mediated by P2X purinoceptors is caused by an
influx of Ca’*. P2Y purinoceptors are comprised of seven
membrane-spanning receptors, which are coupled to G-pro-
teins, resulting in the mobilization of [Ca®*]; from internal
Ca** stores (Dubyak, 1991; Abbracchio and Burnstock,
1994 Burnstock, 1996, 1997; Fredholm et al., 1997; Kuna-
puli and Daniel, 1998).

It has been reported that isolated coronary arteries pos-
sess P2X and P2Y purinoceptors (Hopwood and Burn-
stock 1987; Corr and Burnstock 1994). These studies, how-
ever, only observed the phenomena of the extension and
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contraction of coronary arteries using either rounded slices of
heart specimens or isolated Langendorff perfused heart
specimens. On the other hand, some recent researchers
have reported that cultured smooth muscle cells {from the
coronary artery display pharmacological characteristics that
are consistent with activities associated with P2Y
purinoceptors (Strobaek et al., 1996; Seiler, 1999; Weirich
et al., 2001). However, the above data were based on in vitro
experiments, and our understanding of purinergic receptors
of the arterioles in situ remains limited. Studies on the
effect of extracellular ATP on subcellular [Ca*"]; changes
in the intact tissues are awaited to clarify the physiological
role of purinergic receptors in the coronary arterioles.

Digital imaging analysis of [Ca’"]; dynamics in intact
living tissues may represent a useful approach for distin-
guishing different cellular responses to a transmitter. With
the development of techniques for the digital imaging of
[Ca®'];, characteristic features such as Ca?" oscillation
(Berridge and Galione, 1988; Berridge, 1990; Jacob, 1990;
Tsien and Tsien, 1990) and Ca*" waves (Meyer and Stryer,
1991; Thomas et al., 1992; Berridge, 1993; Pozzan et al.,
1994) have been reported in many cell types. Employing
these techniques, previous studies have mainly used cul-
tured or isolated cells as an experimental model (Bouche-
louche, 1993). However, these isolated/cultured cells lose
their natural conformation and structure, and the intracellu-
lar signaling of such cells may be altered (Nelson ef al.,
1990). Consequently, the best approach appears to be a
study of [Ca’*]; dynamics in individual cells in intact tissue
specimens using real-time confocal microscopy (Satoh et
al., 1997; Kimura et al., 1999; Mori et al., 2000; Shinohe
and Saino, 2000; Kumagai and Saino, 2001; Saino et al.,
2002a, b; Kubo-Watanabe et al., 2002, 2003; Saino and
Satoh, 2004).

Thus, the aim of this study was to clarify the mechanism
of ATP-induced [Ca**]; dynamics in coronary arteriole
smooth muscle cells. To achieve this, we examined the [Ca®"];
dynamics of semi-intact coronary arterioles from golden
hamsters that retain their essential vascular structures. We
recently succeeded in showing that ATP participates in a
variety of actions in arterioles of different tissues (Saino et
al., 2002b). The present study especially attempts to speci-
fy the types of purinoceptors that are present in the smooth
muscle cells of the coronary arterioles.

Materials and Methods

Preparation of arterioles

Experiments were conducted according to the guidelines of
the ethics committee for animal treatment at Iwate Medical

University. Adult male and fcmale golden hamsters,
Mesocricetus auratus, (10—12 weeks old, body weight
100-120 g) were used. The hamsters were killed by carbon
dioxide gas followed by exsanguination. The heart was
quickly removed and soaked in Hepes-buffered Ringer's
(HR) solution. The HR solution contained 118 mM NaCl,
4.7mM KCI, 1.25 mM CaCl,, 1.13mM MgCl,, | mM
NaH,PQy, 5.5 mM D-glucose, MEM amino acids solution
(Gibco, Grand Island, NY, USA), 0.2% bovine serum albu-
min (Sigma, St. Louis, MO, USA) and 10 mM Hepes; pH
7.4, adjusted with NaOH. Arterioles were isolated from the
heart and digested with collagenase (100 U/m/; purified by
HPLC; Elastin Products, Owensville, MO, USA) in the HR solu-
tion for 2h at room temperature (20-25C). Connective tissues
were then carefully removed. Ca**-deficient solutions were
prepared by replacing CaCl, with EGTA (1.0mM; Sigma).

Intracellular Ca** imaging

In order to measure [Ca*'];, coronary arterioles were placed
on a glass cover slip, set in a perifusion chamber, and incu-
bated with 10 uM Indo-1/AM (Indo-1/AM; Dojindo,
Kumamoto) in the HR solution for 45 min at 15C. Indo-1
(excited by ultraviolet light) is a ratiometric dye that is used
in the quantitative determination of [Ca’*];. The emission
maximum of Indo-1 shifts from 475 nm in a Ca’*-free
medium to 400 nm when the dye solution is saturated with
Ca’". The ratio of emission intensity shorter than 440 nm to
that longer than 440 nm can be used to estimate [Ca>"];; a
higher ratio indicates a higher [Ca*"];. Artifacts which
include photobleaching and dye leakage can be eliminated
by this ratiometry. We measured [Ca®*]; in restricted areas
(an approximately 0.5 um”* spot size).

A real-time confocal microscope (RCM/Ab; a modified
version of a Nikon model RCM-8000, Tokyo) was used to
measure [Ca’"]; changes. Cells loaded with Indo-1 were
exposed to an ultraviolet-beam (351 nm). An argon-ion
laser was equipped with an inverted microscope (TE-300,
Nikon), and the fluorescence emission was passed through
a water-immersion objective lens (Nikon C Apo 40 X, N.A.
1.15) to a pinhole diaphragm. The acquisition time per
image frame was 1/30 sec using this system. Images were
immediately stored on high-speed hard disks. The digital
images in the laser scanning microscopic imaging were
composed of 512 X480 pixels with a density resolution of
8 bits/pixel. The fluorescent intensity was displayed as
pseudocolors with 256 hues, with red representing a high
[Ca’]; and purple and blue a low [Ca**];.

Stimulation by ATP and ATP-analogs

The [Ca®']; dynamics of arterioles was examined in a



perfusion chamber as quickly as possible after the dye-load-
ing procedure. After perfusion with the standard HR solu-
tion for a few minutes at room temperature, intact arterioles
were selected and examined under the microscope. Speci-
mens were continuously perfused with the HR solution
containing the following agonists and/or antagonists:
adenosine (Sigma; 100 uM), adenosine 5'-triphosphate
(ATP; Kohjin, Tokyo; 100 uM), adenosine 5'-diphosphate
(ADP; Sigma; 100 uM), adenosine 5'-monophosphate
(AMP; Sigma; 100 uM), a, f-methyleneadenosine
5'-triphosphate (a, f-methylene ATP; a typical agonist of
P2X, s-purinoceptors; Sigma; 100 uM), uridine triphos-
phate (UTP; an agonist of P2Y, 4 ¢-purinoceptors; Sigma;
100 uM), suramin (an antagonist of P2 purinoceptors;
Research Biochemicals International, Natick, MA, USA;
90 u M), reactive blue-2 (RB-2; an antagonist of
P2Ypurinoceptors; Research Biochemicals International;
30 uM), thapsigargin (a microsomal Ca’* ATPase inhibitor;
Alomone Labs, Israel; 1 uM ), pyridoxal phosphate-6-
azophenyl-2',4'-disulfonic acid (PPADS; an antagonist of
P2Xpurinoceptors; Sigma; 100 uM), GdCl; (a nonspeci-
fic cation channel blocker, Wako, Japan; 100 M), and
diltiazem (a L-type Ca’" channel blocker; Sigma; 40 uM).

Ultrastructure

To monitor ultrastructural changes of the smooth muscles
that could occur during the experiments, coronary arterioles
were observed by electron microscopy. After measuring the
[Ca**], dynamics, the arterioles were fixed in 0.125%
-glutaraldehyde and 4% paraformaldehyde in phosphate-
buffered saline (PBS; 100 mM) for about 4 hrs at room
temperature. Specimens were then postfixed in 1% osmium
tetroxide (Merck, Germany) in PBS for 1.5h at 4C, dehy-
drated in a series of ethanol, and embedded in Epon 812
(TAAB, Berkshirc, UK). Longitudinal sections were con-
secutively cut through the arterioles using an ultramicro-
tome (2088 Ultrotome; LKB, Bromma, Sweden). Semithin
sections (about 1 gm thick) were stained with toluidine
blue and observed by light microscopy. Ultrathin sections
(about 0.07 um thick) were doubly stained with uranyl
acetate and lead citrate, and examined in an electron micro-
scope (H-7100; Hitachi Co, Hitachi).

Results

The ultratructures of coronary arterioles

Electron microscopy revealed that the specimens prepared
for the intracellular calcium imaging study maintained the
typical structural integrity of coronary arterioles (Fig. la).
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They were surrounded by smooth muscle cells in a circular
fashion, and no significant ultrastructual damage (e.g.
swollen mitochondria, vacuolation of sarco/endoplasmic
reticulum) was detected. In the coronary arterioles without
the ATP perfusion, profiles of the smooth muscle cells were
rather smooth and intercellular spaces were not enlarged,
signs indicative of normal intercellular communication
(Fig. 1b). However, after the ATP perfusion, the outline of
the smooth muscle cells appeared undulated because of the
contraction of the smooth muscle cells (Fig. 1c). The ATP-
stimulated smooth muscle cells appeared to be dark com-
pared with the non-stimulated smooth muscle cells. No
other structural differences between the non-stimulated and
ATP- loaded specimens were detected.

Effect of ATP on [Ca**]; dynamics

No spontaneous [Ca’*]; changes were observed in the
smooth muscle cells of the coronary arterioles. A small per-
centage of injured cells, which showed high [Ca’*]; at rest-
ing conditions, were excluded from subsequent analyses.
The exposure of the arteriole to extracellular ATP led to an
increase in [Ca*"]; of the smooth muscle cells (n=12) (Fig.
2a—h). In the absence of extracellular Ca’* ([Ca*"],), ATP
failed to induce increases in [Ca**]; of these cells (n=14)
(compare Fig. 3a and 3a’ to 3b and 3b"). Diltiazem (40 uM),
a L-type Ca*" channel blocker, also inhibited the ATP-
induced [Ca**]; increases (n=8) (Fig. 4a), and Gd** (100 uM),
a nonspecific cation channel blocker, showed the same
effect (data not shown). To investigate the possible contri-
bution of internal Ca** stores, thapsigargin, an inhibitor of
the Ca*" pump of the sarco/endoplasmic reticulum, was
used. The depletion of Ca’* stores by thapsigargin (1 uM)
failed to inhibit ATP-induced increases in [Ca**]; (n=9)
(Fig. 4b), suggesting that an influx of Ca’" from the extra-
cellular spaces could be a major factor in the [Ca*"] changes
in the coronary arteriole smooth muscle cells.

Effect of ATP analogs on [Ca**]; dynamics

P1 purinoceptors are more responsive to adenosine and
AMP than ADP and ATP, and conversely, P2 purinocep-
tors are more responsive to ADP and ATP than adenosine
and AMP (Burnstock, 1978). ADP (100 M) and ATP (100
uM) induced an increase in [Ca*"]; in the smooth muscle
cells (n=10), whereas adenosine (100 uM) and AMP (100
uM) did not induce any [Ca’']; increases (n=9) (Fig.
Sa—d). A typical agonist of P2X purinoceptors, a, ff-meth-
ylene ATP (100 uM), induced a [Ca’"]; increase (Fig. 6a).
The ATP-induced {Ca’"], increase was significantly in-
hibited by pretreatment with an antagonist of P2X purino-
ceptors, PPADS (100 uM) (n=8) (Fig. 6b), while a typical
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Fig. 2. Pseudocolor images of smooth muscle cells of the coronary arteriole showing [Ca’*]; changes, which were mea-
sured by ratiometry using Indo-1 (a-h). In the presence of extracellular Ca** (1.25 mM), arterioles were stimulated with
ATP at room temperature. After 10 sec of stimulation, the smooth muscle cells became contracted and [Ca®*]; was
increased in the cells (b). Thereafter, the [Ca?*]; increase spread to adjacent cells (compare a with b—h). Color scale bar:
Fluorescence ratio represents [Ca®*];.

Fig. 1. Electron micrographs of a golden hamster coronary arteriole prepared for the intracellular calcium imaging. a: Lon-
gitudinal section of a non-stimulated control arteriole. b: In non-stimulated arterioles, the profiles of smooth muscle cells
are almost smooth. ¢: After ATP stimulation, most of the smooth muscle cells are shrunken (black arrow heads) and have
meandering intercellular spaces (white arrow heads). A: fibroblasts of adventitia, E: endothelia, I: intercellular spaces, L:
lumen, N: nuclei, S: smooth muscle cells. Bars = 25 um
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Fig. 3. Dependence of extracellular Ca’* on ATP-induced [Ca’']; dynamics. Time courses of [Ca**]; dynamics induced by
ATP in coronary arteriole smooth muscle cells (a and b; green, red, and blue lines) at certain areas (about | um*). Each
green, red, and blue line represents [Ca’*]; at the respective green, red, and blue boxes in the fluorescent images, respec-
tively. ATP (100 uM)-induced [Ca®"]; increases in the cells (a and a'). Under extracellular Ca?’-free conditions ([Ca®*],-
free), stimulation by ATP led to no further Ca** increase in the cells (b and b').

agonist of P2Y purinoceptors, UTP (100 M), had no ef- failed to inhibit ATP-induced [Ca®']; increases (n=8)
fect (Fig. 6¢). ATP-induced [Ca’']; increases in the cells (Fig. 7b).

were prevented by pretreatment with an antagonist of We thus concluded that smooth mukcle cells of the
P2 purinoceptors, suramin (90 uM) (n=8) (Fig. 7a). Re- hamster coronary arterioles possess P2X, but not P1 or P2Y
active blue-2 (30 uM), an antagonist of P2Y-purinoceptors, purinoceptors.
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Fig. 4. Time courses for the ATP-induced [Ca’*]; dynamics in coronary arteriole smooth muscle cells (a, b; green, red,
and blue lines) at certain areas (about 1 um?). Diltiazem (40 M) inhibits ATP (100 uM)-induced [Ca’"]; dynamics in the
cells (a). After depleting intracellular Ca’" stores by treatment with thapsigargin (1 uM), ATP (100 uM) caused a [Ca®*];
increase in the cells (b).
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Fig. 5. Time courses for [Ca**]; dynamics induced by ATP and ATP-analogs in coronary arteriole smooth muscle cells
(a—d; green, red, and blue lines) at certain areas (about 1 um?). Adenosine (100 uM) and AMP (100 zM) had no effect on
[Ca®"]; dynamics (a and b). ADP (100 uM) had an effect on [Ca’']; dynamics (¢). ATP (100 uM) was more potent than
ADP (d). '



102 M. Matsuura et al.:

Ratio Ratio

0s [ —methylene ATP (100uM 08 [
%f-methylene ATP (100uM ) PPADS (100 uM)

07
o,p—methylene ATP (100uM )

06

05

0 50 100 150 gec 0 50 100 150 sec

Ratio
08 r

Fig. 6. Time courses for [Ca’’]; dynamics in coronary
07 r UTP (100uM ) arteriole smooth muscle cells (a—c; green, red and blue
lines) at certain areas (about 1 um®). a, f -methylene ATP
(100 uM) caused a strong [Ca’’]; increase in the cells (a).
Pyridoxal phosphate-6-azophenyl-2', 4'-disulfonic acid
(PPADS; 100 u M) inhibits a , # -methylene ATP (100 4 M)-
induced [Ca’"]; increases the same as above (b). UTP (100
uM) failed to induce an increase in [Ca’*]; (¢).
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Fig. 7. Time courses for [Ca’’]; dynamics induced by ATP in the presence of purinoceptor antagonists (a and b; green,
red, and blue lines) at certain areas (about 1 um®). Suramin (90 #M) inhibited ATP (100 uM)-induced [Ca®*]; increases (a).
Reactive blue-2 (RB-2; 30 uM) did not inhibit ATP (100 uM)-induced [Ca’*]; increases (b).



Discussion

The present study is the [irst (o reveal the involvement of
[Ca’'], dynamics with respect to ATP and its analogs in
intact coronary arterioles. Ca’* responses have been exam-
ined mainly in cultured or isolated vascular smooth muscle
cells by various imaging techniques (lino et al., 1994; Yip
and Marsh, 1996; Li et al., 1997, Bolton and Gordienko,
1998; Jaggar et al., 1998). In the course of the cultured
process of vascular smooth muscle cells, cellular responses
induced by a P2X receptor were lost, whereas [Ca®'];
increases mediated by a P2Y receptor appeared (Pacaud et
al., 1995; Erlinge, 1998). In addition, functional coupling
between the sarco/endoplasmic reticulum and mitochondria
was found to be altered during the dedifferentiation and/or
redifferentiation process which occurs in the rat aortic
smooth muscle cells in culture (Vallot ef al., 2001). It is
also possible that the smooth muscle cells in intact arteri-
oles differ in characteristics from the cultured cells. In this
context, it is crucial to analyse the intact smooth muscle
cells by real-time confocal microscopy.

Heterogenous responses of smooth muscle cells in
the coronary arterioles with respect to ATP

Based on the present results, we consider that the major
pathway of the ATP-induced [Ca’"}; increase is the influx
of Ca** vig ion channels in the smooth muscle cells of coro-
nary artcrioles. P2, but not P1 purinoceptors, can be
involved in the ATP-mediated [Ca’*]; increase. A potent
agonist of P2X purinoceptors caused a [Ca’"]; increase, but
a P2Y purinoceptor agonist had no effect. P2X antagonists
inhibited an ATP-induced [Ca**]; response. Therefore, the
response of the coronary arteriole to ATP can be mediated
by P2X, but not P2 purinoceptors.

Several P2X receptors are reported to be present in vas-
cular tissues, including the coronary artery, aorta, cerebral
artery and basilar artery (von Kugelgen and Starke, 1990;
Bo et al., 1998a; Nori et al., 1998); the main subtype is
thought to be the P2X, purinoceptor (Vulchanova ef al.,
1997; Bo et al., 1998b; Hansen et al., 1999), as judged
from molecular biological data and electrophysiological
results obtained in studies of P2X receptor-expressing cells
and freshly isolated vascular cells. The present results are
consistent with the view that vascular smooth muscle cells
contain P2X purinoceptors.

Previous researchers reported that both P2X- and P2Y-
purinoceptor subtypes are present in smooth muscle in iso-
lated rabbit mesenteric and coronary arteries (Mathieson
and Burnstock, 1985; Hopwood and Burnstock, 1987; Corr
and Burnstock, 1994). On the other hand, we recently
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demonstrated that smooth muscle cells in the testicular arte-
rioles contain solely the P2X purinoceptor, and those in the
cerebral arterioles contain both P2X and P2Y purinoceptors
(Saino et al., 2002b). A series of our studies show that arte-
riole smooth muscle cells might have a great variety of
receptor subtype which could not have been revealed using
culture cells; it is possible that arteriole functions in differ-
ent tissues are controlled in different ways.

The ATP-dependent [Ca*']; transient in primarily cul-
tured smooth muscle cells from porcine coronary arteries is
mediated via a UTP-activated P2Y purinoceptor subtype,
which might be P2Y, purinoceptor (Seiler et al., 1999;
Weirich et al., 2001). Obviously, there are many differ-
ences between smooth muscle cells of the intact arterioles
and cultured vascular smooth muscle cells.

Endothelial cells responses to ATP

In the vascular wall, ATP is known to be released along
with noradrenaline from sympathetic nerve terminals
(von Kiigelgen and Starke, 1991). In the present study, ATP
was added to the perfused solution, which mimicks a situa-
tion in which ATP is released from nerve terminals around
arterioles.

On the other hand, it can be argued that endothelial cells
also play a role in [Ca’"]; changes in arteriole smooth mus-
cles. It was recently reported that the ATP-stimulated
endothelium (via P2Y purinoceptors) produces nitric oxide,
and then vasodilation occurs (Konduri et al., 2004). In our
preliminary experiments, we observed [Ca’*']; changes in
endothelial cells in arterioles, but no response to ATP was
detected. Therefore, the participation of endothelial cells in
the ATP-induced muscle contractions in the present study
can be discounted in the present study.

Conclusion

The present study revealed that purinoceptors of coronary
arteriole smooth muscle cells are P2X ion channel type
receptors. Real-time confocal microscopy was found to be
a useful tool for investigating structural and functional
changes in living vascular smooth muscle cells. Clarifica-
tion of their specificities by this type of study is essential
for the development of therapies that are designed to
improve the blood circulation in certain tissues/organs.
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