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smooth muscle cells between rat posterior ciliary artery and vorticose vein
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ABSTRACT

5-hydroxytriptamine (5-HT: serotonin) is an important transmitter that causes vessel constriction,
although few studies have examined the effect of 5-HT on venous smooth muscles. The intracellu-
lar Ca** concentration ([Ca®']) plays an essential role in stimulus-response coupling in numerous
tissue/cells including vascular smooth muscle cells. The present study was performed to examine
whether differences between arteries and veins in the response to 5-HT can be detected under con-
focal microscope with respect to [Ca”]; dynamics. In posterior ciliary arteries of rats, 5-HT induced
a [Ca®"), increase. The 5-HT-induced responses were caused by both Ca®** influx and mobilization.
Agonist and antagonist experiments revealed that arterial smooth muscles possess 5-HT,, 4, , (G-
protein-coupled type) and 5-HT, (ion channel type) receptors, and that 5-HT, in particular plays a
major role in these responses. For vorticose veins, the 5-HT-induced responses were also caused
by both Ca® influx and mobilization. However, the cAMP dependent pathway (5-HT, ;) was found
to be significant in vasocontraction with respect to 5-HT in these vessels. Thus, Ca®* mobilization
was induced by 5-HT, and 5-HT,, in a vessecl-dependent manner, whereas Ca”* influx universally
was induced by 5-HT,. These results indicate that the posterior ciliary arteries and vorticose veins

in the same tissue might differ greatly in their responses to stimulus.

Retinal vein occlusion is the second most common
retinal vascular disorder after diabetic retinopathy
and is considered to be an important cause of visual
impairment (9, 54). Ischemic disorders of the optic
nerve constitute an important cause of visual loss (7,
30). For example, ischemic optic neuropathy, an
acute disorder of the optic nerve, is now known to
be a common yet serious vision-threatening disease
in middle-aged and elderly populations (13, 72).
Similarly, evidence is mounting that vascular insuf-
ficiency in the intraorbital portion of the optic nerve
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might play an important role in amorose glaucoma-
tous optic neuropathy and papilloedema (65, 83).
The main vascular sources of the intraorbital por-
tion of the optic nerve consist of the branches of the
posterior ciliary artery and the central retinal artery
(29, 36, 50, 79). The choroid blood vessels of the
eye provide 80-95% of the blood to the ocular
structures including the outer retina and ciliary pro-
cesses (6). The central retinal artery supplies the op-
tic nerve and the inner retina, while the posterior
ciliary artery pierces the sclera to enter the choroi-
dal coat of the eye. The central retinal artery ends
without significant anastomoses (32). The choroidal
vessels are innervated by sympathetic and parasym-
pathetic nerves; the parasympathetic innervation of
the choroid derives from the ipsilateral pterygopala-
tine ganglion (59). Parasympathetic nerve stimulation
produces nitric oxide-mediated vasodilation, which
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appears to be selective for vessels in the anterior
choroid (67). Sympathetic nerves from the superior
cervical ganglion project to the choroid and, when
stimulated, clicit marked vasoconstriction through-
out the choroid (39, 67).

The retinal vasculature shares many anatomical
and physiological features with the cerebral and cor-
onary vasculature, which are exposed to similar in-
trinsic and environmental influences (17, 53). Retinal
vessel caliber sizes convey different information
about systemic diseases, with arteriolar narrowing
being associated with elevated blood pressure (10,
40, 81). Notably, several general diseases cause
blindness in patients following simultanecus com-
bined retinal artery and vein occlusion. Central retinal
artery occlusions result from localized arteriosclerot-
ic changes, an embolic event, which typically pres-
ents as a sudden, severe, and painless visual loss (31,
52). With regard to morphological studies of these
disorders, corrosion casts of the retinal vasculature
of small animals such as rats and mice can be used
to demonstrate the effects of systemic diseases on
the retinal vasculature because good models of he-
reditary or spontaneous systemic diseases are avail-
able. Several studies on corrosion cast vasculature
of the retina have been reported (4, 20, 21, 51). It
is well known that the shape and distributions of
smooth muscle cells differ between artery/arterioles
and vein/venules. The morphological differences of
smooth muscle cells can indicate their different roles
in vivo. However, the data available on the physio-
logical characteristics of vein/venule smooth muscle
cells is extremely limited.

5-hydroxytriptamine (5-HT: serotonin) is a neu-
rotransmitter that is involved in a wide variety of
physiological functions via its interaction with mul-
tiple receptor subtypes, mainly in the central and
peripheral nervous systems and in the gastrointesti-
nal tract (2, 8, 12, 55). In addition, 5-HT is a well-
known potent vasoconstrictor agent in several arteries
(77, 78, 80). A role for 5-HT in the control of brain
perfusion has been widely considered (41, 85, 86).
More specifically, 5-HT has been implicated in cere-
brovascular dysfunctions such as vasospasm and mi-
graine (18, 19). For example, the level of 5-HT in
cerebrospinal fluid was shown to be elevated imme-
diately after subarachnoid hemorrhage and demon-
strated to be involved in fatal vasospasmus (60).
Our present understanding of the role of 5-HT in
cardiovascular regulation is based on the knowledge
that there are seven main types of 5-HT receptors
(5-HT, to 5-HT,) (34, 35, 56). With the exception of
the 5-HT, receptor, which is a ligand-gated ion chan-
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nel, each of the identified 5-HT receptors represents
a seven-transmembrane domain, G-protein-coupled
receptor (25, 34). The 5-HT, and 5-HT,, receptor
family members couple with adenylyl cyclase, where-
as binding of 5-HT to the Gqg-coupled 5-HT, recep-
tor activates phospholipase C, resulting in the release
of inositol triphosphate and an elevation of cytosolic
calcium. Furthermore, the 5-HT, family receptors
are important for the mediation of a number of
physiological functions including vascular and non-
vascular smooth muscle contraction (58).

The aim of this study was to clarify the Ca®" sig-
naling mechanism of 5-HT in the smooth muscle
cells of the posterior ciliary artery and vorticose vein
in the rat. Although it is very important to under-
stand the pathophysiology underlying disorders such
as hypertension and cerebrovascular diseases, only a
few studies of intracellular Ca* concentration ([Ca™],)
changes in intact veins are currently available. Pre-
viously, we have demonstrated that adenosine tri-
phosphate (ATP) participates in a variety of actions
in the arterioles of different tissues (62), and subse-
quently investigated the [Ca*"]; dynamics in individ-
ual cells in intact arteriole specimens using real-time
confocal laser scanning microscopy, which has ex-
cellent time and spatial resolution (42, 44, 46, 61-
63). In particular, we showed that the reaction of
arteriole smooth muscle cells to 5-HT differs be-
tween testis and brain arterioles, which emphasizes
the possibility of a characteristic regional cerebral
blood circulation (42). Compared to the previously
utilized technologies, the present study reports the
investigation of alterations in the [Ca®']; of smooth
muscle cells in the posterior ciliary arteries and vor-
ticose veins in response to 5-HT and selected modi-
fying reagents.

MATERIALS AND METHODS

Preparation of the ciliary arteries and vorticose
veins. Experiments were conducted according to the
guidelines of the ethics committee for animal treat-
ment of Iwate Medical University. Adult male rats
{Wistar, 8-12 weeks old, body weight 250400 g)
were euthanized by carbon dioxide gas. They were
then perfused via the left cardiac ventricle with
Ringer’s selution (147 mM NaCl, 4 mM KCl, and
2.25 mM CaCl,) at 25°C at a hydrostatic pressure of
approximately 1 m H,O. After wash-out of the blood
cells from the vessels, the eye balls were removed
and placed in Hepes-buffered Ringer’s solution (HR).
The HR solution contained 118 mM NaCl, 4.7 mM
KCl, 1.25 mM CaCl,, 1.13 mM MgCl,, 1 mM
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NaH,PO,, 5.5 mM D-glucose, MEM amino acids so-
lution (Gibco, Grand Island, NY, USA), 0.2% bovine
serum albumin (Sigma, St. Louis, MO, USA), and
10 mM Hepes; pH 7.4, adjusted with NaOH. The
posterior ciliary arteries and vorticose veins were
isolated from the eyes and were digested with colla-
genase (100 U/mL; Elastin Products, Owensville,
MO, USA) in HR solution for 2 h at 37°C. The con-
nective tissues were then carefully removed. Ca®-
deficient solutions were prepared by replacing CaCl,
with EGTA (1.0 mM; Sigma).

Intracellular Ca’" imaging. To measure [Ca®'], the
arteries and veins were placed on a glass cover slip,
set in a perfusion chamber, and incubated with
10 uM Indo-1/AM (Indo-1/AM; Dojindo, Kumamoto,
Japan) in the HR solution for 2h at 37°C. Indo-1
(cxcited by ultraviolet light) is a ratiometric dye that
is used in the quantitative determination of [Ca®],
The emission maximum of Indo-1 shifts from 475 nm
in Ca™-free medium to 400 nm when the dye solu-
tion is saturated with Ca®*. The ratio of the intensity
of the emissions shorter than 440 nm to that of
those longer than 440 nm can be used to estimate
the [Ca®]; a higher ratio indicates a higher [Ca™]..
Artifacts, which include photobleaching and dye leak-
age, can be eliminated by use of this ratiometry.

A real-time confocal microscope (RCM/Ab; a
modified version of a Nikon model RCM-8000,
Tokyo) was used to measure the [Ca®'], changes.
Cells that had been loaded with Indo-1 were ex-
posed to an ultraviolet-beam (351 nm). An argon-ion
laser equipped with an inverted microscope (TE-300,
Nikon) was used wherein the fluorescence emission
was passed through a water-immersion objective
lens (Nikon C Apo 40x, N.A. 1.15) to a pinhole di-
aphragm. The acquisition time per image frame was
1/30 s using this system. Images were immediately
stored on high-speed hard disks. The digital images
from the laser scanning microscopic imaging were
composed of 512 x 480 pixels with a density resolu-
tion of 8 bits/pixel. The fluorescence intensity was
displayed in pseudocolor with 256 colors, with red
representing high [Ca®']; and purple and blue repre-
senting low [Ca™'];. We measured [Ca™]; in restricted
areas (spot size of approximately 3 pm®) by ratio-
metry.

Stimulation by 5-HT and selected reagents. The
[Ca®], dynamics of the arteries and veins were ex-
amined in a perfusion chamber as rapidly as possi-
ble after the dye-loading. After perfusion with the
standard HR for a few minutes at room temperature,
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intact arteries and veins were selected and examined
under the microscope. Specimens were continuously
perfused with HR containing the following agonists
and/or antagonists: 5-HT (Nacalai Tesque, 10 pM);
GdCl, (a nonspecific cation channel blocker; Wako,
Japan, 100 pM); diltiazem (a L-type Ca®" channel
blocker, 40 uM); thapsigargin (a sarco-endoplasmic
reticulum Ca®'-ATPase inhibitor, 2 uM); U73122 (a
phospholipase C inhibitor, 5 uM); 8$Q22536 (an ade-
nylyl cyclase inhibitor, 100 pM); ketanserin (a 5-HT,
antagonist, 1 pM); 8-Hydroxy-DPAT (a 5-HT,, ago-
nist, 50 pM), all from Sigma; CP93129 (a 5-HT,,
agonist, 10 pM); ML 9 (a selective myosin light chain
kinase inhibitor, 10 uM); PKI,,,,, (a cell-permiable
protein kinase A (PKA) inhibitor, 2 uM), all from
TOCRIS (Minneapolis, MN, USA), a-methylserotonin
maleate (2 5-HT, agonist, 100 pM); 2-methylsero-
tonin maleate (a 5-HT, agonist, 100 uM); and H-89
(a PKA antagonist, 20 pM), all from Enzo Life Sci-
ences (Farmingdale, NY, USA).

Ultrastructure analysis. We utilized light microsco-
py to examine the vasculatory ultrastructures of the
arteries and veins within a subject eyeball. The tis-
sue was cut into small pieces {(approximately 5 mm x
5 mm) and fixed in 0.125% glutaraldchyde and 4%
paraformaldehyde in phosphate-buffered saline (PBS;
100 mM) for approximately 4 h at room tempera-
ture. The specimens were then postfixed in 1% os-
mium tetroxide (Merck, Darmstadt, Germany} in PBS
for 1.5h at 4°C, dehydrated through an ethanol se-
ries, and embedded in Epon 812 (TAAB, Berkshire,
UK). Semi-thin sections (~1 pm thick) were were
consecutively cut using an ultramicrotome (2088 Ul-
trotome; LKB, Bromma, Sweden) and stained with
toluidine blue. The sections were examined by light
microscopy.

RESULTS

Structures of the posterior ciliary artery and vorti-
cose veins
Light microscopy revealed that the specimens pre-
pared for the intracellular calcium imaging main-
tained the typical structural integrity of posterior
ciliary arteries and veins {Fig. 1). The posterior cili-
ary arteries were surrounded by smooth muscle cells
in a circular fashion, and the ciliary arteries con-
tained considerably more smooth muscle within
their walls than did the vorticose veins.

The structural integrity of the arterioles was main-
tained in the prepared specimens. Images of a poste-
rior ciliary artery and a vorticose vein obtained
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Fig.1 Light micrographs of a posterior ciliary artery and vorticose vein around the rat optic nerve head. ON: oplic nerve,
8: sclera, CRA: central refinal artery, PCA: posterior ciliary artery, VV: vorticose vein, SM: smooth muscles.

using real-time confocal laser scanning microscopy
are shown in Fig. 2. The arteries were surrounded
by spindle-shaped smooth muscle cells in a circular
fashion (Fig. 2a). In scanning electron microscopy
studies, we have previously shown that the testicular
and cerebral arterioles exhibited the same external
appearance as that described above (62). However,
in this study we noted considerable differences be-
tween the arterial and venous structures; wherein the
vorticose veins were sutrounded by smooth muscle
cells in the shape of cobblestones (Fig. 2b).

5-HT-induced [Ca’'], increase in posterior ciliary
arteries

Arterial specimens were perfused with normal HR
for 5 min before stimulation by the selected reagents.
Under resting conditions, no spontancous [Ca®7;
changes were observed. Injured cells in the arteri-
oles, which showed high [Ca®*']; at resting condi-
tions, were excluded from the subsequent analyses.
No structural difference was detected between the
controls and the specimens with respect to Indo-1/
AM loading.

5-HT (10 uM) induced an increase in [Ca™]; in
the smooth muscle cells of posterior ciliary arteries
(external diameters < 50 pm}) (Fig. 3a). The increase
was rapid and oscillatory fluctuation or persistent in-
crcases were sometimes observed. Contraction of
the arterioles was evidenced. In the absence of ex-
tracellular Ca®", the increase in [Ca*"]; was not com-
pletely inhibited (» =10) (Fig. 3b). The effect of
Gd** (100 uM), a nonspecific cation-channel block-
er, was the same as that observed in the absence of
Ca* (n=18) (Fig. 3c). Furthermore, no complete in-
hibition of 5-HT-induced [Ca®']; increases was ob-
served following treatment with diltiazem (50 pM),
an L-type Ca’-channel blocker (n=8) (data not
shown). In general, metabotropic receptors are G-
protein-linked, and G protein stimulation activates
phospholipase C, which cleaves membrane-bound
phosphatidyl-inositol-biphosphate to generate inosi-
tol-triphosphate (IP,) and diacylglycerol. This IP,
subsequently causes Ca® mobilization from the in-
ternal stores (3). To determine if this mechanism of
Ca® mobilization was involved in the 5-HT-induced
[Ca®); increase, the effects of thapsigargin and
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Flg.2 Comparison between real-fime confocal laser scanning micrographs of rat posterior ciliary arterial and vorticose ve-
nous smooth muscle cells. (a): Real-time confocal laser scanning micrograph of a rat posterior ciliary artery. The artery is
surrcunded by spindle-shaped smooth muscle cells in a circular fashion. {b): Real-time confocal laser scanning micrograph
of a rat vorlicose vein. The vein is surrounded by smooth muscle cells in the shape of cobble stones. Specimens were per-
fused with normal HR for 5 min before stimulation with the selscted reagents. Color scale bar: fluorescence ratios repre-

senting [Ca®].
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Fig.3 Time courses of posterior ciliary arterial smooth muscle cells show the [Ca*] changes in areas of this size (about
3um?. (a): 5-HT stimulation. (b): Extracellular Ca*-free conditions {[Ca®']-free}. (c): Following administration of Gd*
{100 pM); & nonspecific cation channel blocker. However, neither [Ca®],-free (b} nor treaiment with 100 uM Gd* (c) com-
pletaly inhibited 5-HT-induced [Ca™], increases. The pseudocolor images (a, right) illustrate a posterior ciliary artery showing
the [Ca™], changes observed over time following 5-HT stimulation. Three regions of interest were set.
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Fig.4 Role for the mobilization of Ca* from intracellular Ca®" stores during 5-HT-induced [Ca®], changes in areas of this
size (about 3 pm®. (a) 5-HT (10 pM) induced only a slight [Ca*], increase in the cells after blockage of the sarco-endoplas-
mic reticulum Ca®*'-ATPase by treatment with thapsigargin (Thaps, 2 pM). (b) Treatment with a phospholipase C antagonist,
U73122 (5 pM), partially inhibited the 5-HT-induced [Ca™]; increases. (¢) Treatment with a myosin light chain kinase inhibitor,

ML 9 {10 uM)}, completely inhibited the 5-HT-induced increases in [Ca

U73122 were analyzed. The 5-HT-induced [Ca®'];
increases in the cells were found to be partially pre-
vented by pretreatment with thapsigargin (7= 8)
(Fig. 4a). U73122 (5 pM), an inhibitor of phospholi-
pase C, also partially inhibited the 5-HT-induced in-
creases in [Ca®], (n=9) (Fig. 4b). Thus, both the
Ca® influx from extracellular spaces and the IP,-
dependent Ca”” mobilization from intracellular Ca™
stores were induced by 5-HT stimulation, suggesting
that the mobilization of Ca* might be more signifi-
cant than Ca** influx in the 5-HT-induced response.
These results indicate that both Ca® influx and re-
lease result in a SHT-induced [Ca™]; increase in pos-
terior ciliary arteries.

Phosphorylation of myosin light chain (MLC) is
one of the most important steps for vascular smooth
muscle contraction (37, 66). To determine if this
mechanism of the MLC kinase (MLCK) was involved
in the 5-HT-induced [Ca®’]; increase in our system,
the effect of ML 9, an inhibitor of MLCK, was ana-
lyzed. We found that ML ¢ (10 pM) completely in-
hibited the 5-HT-induced increases in [Ca™]; (n=7)
(Fig. 4c).

- Three regions of interest were set.

Effects of 5-HT and its analogs on [Ca’"], dynamics
in posterior ciliary arteries

We determined the effects of 5-HT and its analogs
on posterior ciliary arteries to observe whether they
are mediated via any of the recognized subtypes of
5-HT receptors. In the presence of ketanserin, a
5-HT, antagonist, 5-HT induced little increase in the
[Ca®™]; in smooth muscle cells (n=8) (Fig. 5a). In
comparison, o-methyl serotonin, a 5-HT, agonist, in-
duced a strong increase in the [Ca®™]; in these cells
(n=18) (Fig. 5b). However, 2-methyl serotonin, a
5-HT, agonist, induced only a small increase in the
[Ca™; (n=8) (Fig. 5c). 8-Hydroxy-DPAT, a 5-HT,,
agonist, also induced little increase in the [Ca™]; in
smooth muscle cells (z = 8) (Fig. 6a), and CP93129,
a 5-HT,, agonist, induced a weak [Ca™]; increase
compared with that from 5-HT (n= 8) (Fig. 6b). In
contrast, H-89 (20 uM), a PKA antagonist, did not
inhibit the 5-HT-induced [Ca®]; response (n=11)
(Fig. 6¢). The effect of PKI,,, (2 pM), another
PKA antagonist, was the same as that observed in
the presence of H-89 (n =8) (data not shown).
Q22536 (100 uM) also did not completely block
this increase (n = 8) (Fig. 6d). Together, these results
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Fig.5 Time courses for the 5-HT-induced [Ca®], dynamics effected using selected modifier drugs in posterior ciliary arteri-
al smooth muscle cells in areas of this size (about 3 pm?. (a): ketanserin (1 pM); a 5-HT, antagonist; (b): a-methyl 5-HT
{100 uM); a 5-HT. agonist; and (c): 2-methyl 5-HT (100 pM); a 5-HT, agonist. Three regions of interest were set.

suggested that the cAMP dependent pathway (5-HT,
and ,,) is insignificant in effecting vasocontraction
following 5-HT stimulation in posterior ciliary arter-
ies. Therefore, it can be concluded that the response
of the posterior ciliary arteries is mediated by the
5-HT,;, 5-HT,, and 5-HT, receptors, and that 5-HT,
in particular plays a major role in these responses.

5-HT-induced [Ca’'], increase in vorticose veins

Venous specimens were perfused with normal HR
for 5 min before stimulation by the selected reagents.
5-HT (10 pM) induced an increase in the [Ca®'], in
the smooth muscle cells of vorticose veins (7 =9)
(Fig. 7a). The SHT-induced [Ca®], increases in vor-
ticose veins were smaller than those in posterior cil-
iary arteries. In the absence of extracellular Ca™, the
increase in [Ca’]; was partially inhibited (n= 8)
(Fig. 7b). The effect of Gd* in these cells was the
same as that observed in the absence of Ca*" (Fig. 7c).
Diltiazem (50 uM) also inhibited the ATP-induced
[Ca®™]; increases (n = 8) (data not shown). However,
the 5-HT-induced [Ca’']; increases in the cells were
completely prevented by pretreatment with thapsi-
gargin (n=19) (Fig. 8a), and the effect of U73122
(5 pM) was the almost same (n=7) (Fig. 8b). These

results indicate that the increases in the [Ca™)
caused by 5-HT result from Ca® released from the
internal Ca’* stores. Furthermore, to determine
whether MLCK was involved in the 5-HT-induced
[Ca®"], increase in vorticose vein smooth muscle
cells, the effect of ML 9 was analyzed and demon-
strated that ML 9 (10 uM) completely inhibited the
5-HT-induced increases in the [Ca’"]; (»="7) (Fig. 8c).

Effects of 5-HT and its analogs on the [Ca’'], dy-
namics in vorticose veins

The effects of 5-HT and its analogs on vorticose
veins were studied to observe whether they are me-
diated via any of the recognized subtypes of 5-HT
receptors. In the presence of ketanserin, 5-HT in-
duced litfle increase in the [Ca®']; in smooth muscle
cells (» = 8) (Fig. 9a). a-methylserotonin induced an
increase in the [Ca®]; (n=8) (Fig. 9b), whereas
2-methylserotonin induced only a small increase in
the [Ca®]; (n=8) (Fig. 9¢c). 8-Hydroxy-DPAT also
induced little increase in [Ca”™"], in these cells (n=28)
(Fig. 10a), whereas CP93129 induced no increase in
the [Ca*]; (n =8) (Fig. 10b). In the presence of
H-89 (20 uM), the 5-HT-induced [Ca’7]; increases
in the cells were completely inhibited (n = 10)
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an adenylyl cyclase antagonist. Three regions of interest were set.

(Fig. 10c). The effect of PKI, ., (2 pM) was the
same as that observed in the presence of H-89 (n = 8)
(data not shown). 8Q22536 (100 pM) also complete-
ly blocked this increase (n = 8) (Fig. 10d). Together,
these results suggest that the 5-HT induced [Ca'];
mobilization within the vorticose veins can be medi-
ated by 5-HT, and other cAMP-dependent pathways
(5-HT,,), in contrast to the findings observed with
posterior ciliary arteries.

DISCUSSION

Rat posterior ocular vasculature has a unique and
simple angioarchitecture compared with that of the
rabbit or primates. In these, the medial and lateral
posterior ciliary arteries are present apart from the
optic nerve (68, 69) whercas in rats, the posterior
ciliary artery travels on the inferior side of the optic
nerve sheath toward the optic disc. The posterior
ciliary artery is derived from the inferior branch of
the ophthalmic artery in the rat eye (26). The struc-
ture of rat posterior choroidal vasculature and poste-
rior ciliary vein have previously been studied.
However, most studies utilized the corrosion casting

method (48, 49, 70, 84), which does not allow the
examination of blood vessel function. Until now,
few data have been available to allow the analysis
of the signaling systems in intact ordinary vessels,
in particular owing to the difficulty in extrapolating
the signaling mechanisms identified in cultured cells
to cells in vivo (75). Furthermore, few researchers
have noted the significance of regional differences
in smooth muscle cells (42). There are also few
pharmaco-physiological studies on arterioles and ve-
nules, which play a pivotal role in tissue circulation,
because of the difficulties in analyzing cellular reac-
tions in intact arterioles and venules using conven-
tional methods. It is likely, however, that venous
smooth muscle cells can response to various trans-
mitters and in particular 5-HT, in different ways
than would arteriole smooth muscle cells. In addi-
tion, even though approximately 65% of the blood
is contained in venous systems, there have been few
studies related to the physiological response of ve-
nous smooth muscle cells to various transmitters/
modulators. The present study revealed that the re-
sponse of arterial and venous smooth muscles to the
vasoactive properties of 5-HT differed between pos-
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Flg.7 Time courses of the vorticose venous smooth muscle cells showing the [Ca®"], changes in aroas of this size (about
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terior ciliary arteries and veins. In the posterior cili-
ary arteries, the 5-HT-induced response of increased
[Ca™); was effected by both the Ca®" influx from ex-
tracellular spaces and its release from internal stores,
whereas the [Ca®'], increase in the vorticose veins
was much more dependent on the Ca’* influx from
extracellular spaces. Furthermore, the activation of
smooth muscle contraction is thought to occur
through increases in the [Ca™];, activation of Ca™/
calmodulin-dependent MLCK, and increases in
MLC phosphorylation, as in the spastic canine basi-
lar artery, where ML.C has been shown to be phos-
phorylated by MLCK (22, 38). Our results using a
MLCK inhibitor in both arteries and veins were
consistent with this model.

Response to 5-HT in the posterior ciliary arteries

Previous pharmaco-physiological studies reported
that the 5-HT, and 5-HT, receptor families most
commonly mediated the contractile responses to
5-HT in certain vascular smooth muscles (27, 34,
35, 45, 73, 76), but the 5-HT-induced [Ca’']; dynam-

ics have not yet been studied. Using Ca® imaging,
we previously demonstrated the details of the 5-HT
receptors found in the cerebral arteries (external di-
ameters > 50 um); in these, 5-HT,,, 5-HT,,, 5-HT,,
and 5-HT, receptors can be identified, with 5-HT,
receptors playing a primary role (42). In this study,
we found almost identical results for the ciliary ar-
teries. Previously we were not able to detect any
changes in the [Ca’']; dynamics of small arterioles
(<50 pm in diameter) during 5-HT stimulation, in-
dicating that smooth muscle cells in the peripheral
cerebral blood vessels lack any response to 5-HT
(42). In a hemorrhaged region, considerable amount
of 5-HT is released from platelets, and if the small-
sized arterioles of the brain express 5-HT receptors,
the released 5-HT from a brain hemorrhage might
induce severe vasoconstriction in the whole cerebral
vascular network, resulting in fatal brain damage. A
lack of response to 5-HT stimulation can lead to re-
active hyperemia, in which the cerebral blood flow
increases transiently following large artery occlu-
sions (33, 43, 87). In this context, previous physio-
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logical studies have reported that 5-HT constricted
large arteries and reduced the vascular resistance of
small vessels (11, 15, 57, 64, 77, 78). In vivo obser-
vation confirmed that 5-HT induced the contraction
of the pial vessel (> 200 pm in resting diameter),
whereas small vessels (<70 ym in diameter) were
dilated (28). Notably, Teng et al. reported that the
ratio of 5-HT, and 5-HT, receptors decreased pro-
gressively to their smallest values in second branch
middle cerebral arteries or smaller segments (73).

In this study, the 5-HT-induced [Ca™]; dynamics
observed in the posterior ciliary arteries appeared to
be similar to the previously observed reactions in ce-
rebral arteries. We previously reported the existence
of regional differences and size-dependent manners
of response to 5-HT in cerebral blood vessels, indi-
cating that the regulatory mechanisms of blood cir-
culation arc highly differentiated in each region of
the central nervous system. In ciliary arteries, the
external diameters are almost same as those of the
cerebral mid- and small-sized arterioles (external di-
ameters < 50 um) (42). By comparing our present
data with that obtained previously, we suggest that
the contraction of the cerebral arteries might be de-
cided not only by the size of the relevant sections

themselves but also by the number of divergences
from main arteries (as the ophthalmic artery repre-
sents the first branch of the internal carotid artery).

Response to 5-HT in the vorticose veins
The marginal venous anastomosis of the peripapil-
lary choroid plays a significant role in the venous
drainage of the optic nerve head and the retinal vas-
culature. Previous reports indicate that the posterior
ciliary veins as well as the vorticose veins provide
venous drainage of the posterior choroid in the rat
(70, 84). The microvascular supply and drainage of
the optic nerve and the peripapillary choroid have
been studied in the rabbit (68), nonhuman primates
(69), and humans (50) using physiologically con-
trolled microvascular corrosion castings (1, 5, 16,
47, 70, 82), which permanently replicate the ana-
tomic condition of the vascular beds under the phys-
iologic conditions at the time of plastic injection.
Such a plastic model of the ocular vasculature ap-
pears to preserve the vascular tone. However, most
studies have of necessity observed only the diversity
of the arteries and veins and not their physiological
response.

Most physiological studies of the venous system
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have utilized the portal veins, and few have exam-
ined the function of the venous smooth muscle cells.
Takahashi ef al., using real-time confocal laser scan-
ning microscopy, revealed that a transient and peri-
odic increase in the [Ca®']; occurred within the
longitudinal smooth muscle cells and was transmit-
ted spirally from the intestinal to the hepatic side of
the hepatic portal veins (71). The current study rep-
resents the first to incorporate the use of a calcium
imaging technique to compare the ophthalmic arter-
ies and veins. For the portal veins, the longitudinal
smooth muscle cells were shown to span the inter-
val of the fold in the manner of a spirally arranged
palisade around the vessel wall (71). In the present
study, the veins were surrounded by smooth muscle
cells in the shape of cobblestones. Previous scan-
ning electron microscopy studies have shown that
muscular venules consist of at least one layer of flat
cells similar to the flattened smooth muscle cells
characteristically observed in the walls of the veins
of the rat mammary gland (24) and of the venous
segments of rabbit ear arteriovenous anastomoses
(23). Our confocal laser scanning microscopy pro-
vided similar images of smooth muscle cells in the
analyzed vessels. In the future, it will be necessary

to verify whether the streaming of the vorticose ve-
nous smooth muscle cell alignment differs from that
of other veins. Here, we demonstrated that the
5-HT-induced [Ca*']; dynamics in the vorticose veins
differed from that of the posterior ciliary arteries.
Our results suggested that the receptors responsi-
ble for 5-HT response in the posterior ciliary arteries
and veins are most likely 5-HT, ,, whereas the cere-
bral vasculature can possess 5-HT,,, 5-HT,,, 5-HT,,
and 5-HT, receptors. Also, it is possible that PKA
interacts with upstream of the IP, receptors in the
vorticose veins. Compared to the ciliary arteries, the
PKA-dependent 5-HT receptors (i.e., 5-HT,,) are
more dominant than the 5-HT, receptors in the vor-
ticose veins. It seems probable that veins do not re-
quire a delicate control mechanism to regulate tissue
circulation. A previous study, which examined the
intracellular structure of the endothelium lining of
vein-to-artery grafts, demonstrated that the surface
area of the rough endoplasmic reticulum was signif-
icantly increased up to 26 weeks after graft inser-
tion, but not at 52 weeks (74). Between arterioles
and venules, the latter exhibit endothelial cells con-
taining few organelles such as mitochondria, dense
bodies, and granular endoplasmic reticulum (14).
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We therefore suggest that the Ca® influx is much
more dominant than the Ca® mobilization related to
Ca®" release from the endoplasmic reticulum in veins
compared to arteries.

Conclusion

Our examination of the response to 5-HT in posteri-
or ciliary arteries and vorticose veins demonstrated
that arterial and venous smooth muscle cells might
serve in a great variety of responsibilities which
could not have found out in previous studies. 5-HT
receptors in posterior ciliary arteries and vorticose
veins play important roles in the regulation of vas-
cular functions. In the present study, the receptors
that function in arterial and venous smooth muscle
cells were shown to differ within the same tissue,
suggesting that the consequences of 5-HT-induced
[Ca®™]; increase in vivo are not the same between
these cells. These results indicate that the tissue/or-
gan-specific characteristics of vascular function must
be taken into consideration when determining their
physiological responses. Therefore, clarification of
their specificities is essential for the development of
therapies designed to improve the blood circulation
in given tissues/organs.
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