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Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by
their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs
interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts
(PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression
of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines.
MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory
cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the
direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance
of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the
migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an
immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to
enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue.

1. Introduction

Mesenchymal stem cells (MSCs) are adult stem cells with
the ability to differentiate into mesenchymal cells such as
osteoblasts, adipocytes, chondrocytes, and fibroblasts, while
retaining self-renewal and migration abilities [1]. MSCs were
initially identified in the bone marrow by Friedenstein et al.
[2, 3]. Subsequently, MSCs were isolated from the adipose
tissues [4], fetal liver [5], cord blood andmobilized peripheral
blood [6], fetal lung [7], placenta [8], umbilical cord [9,
10], dental pulp [11], synovial membrane [12], periodontal
ligament (PDL) [13], endometrium [14], and trabecular and
compact bone [15, 16].

Upon activation by tissue damage in vivo, MSCs con-
tribute to tissue repair through a multitude of processes such
as self-renewal,migration, and differentiation. Cellmigration
is closely related to stem cell homing. Stem cell therapy relies
on the appropriate homing and engraftment capacity of stem
cells. Chemokines such as monocyte chemotactic protein-
1 (MCP-1/CCL2) and/or stromal cell-derived factor-1 (SDF-
1/CXCL12) and their receptors such as CCR2 and CXCR4
promote the effective homing of MSCs. The CXCR4 ligand
SDF-1 has a dose-dependent effect on human and murine
bone marrow-derived MSC (BM-MSC) migration [17–19].
Kanbe et al. [20] demonstrated that synovial fibroblasts
secrete high levels of SDF-1 in osteoarthritis and rheumatoid
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arthritis. This raises the possibility that the SDF-1 secreted
in arthritic joints, and its action as an MSC chemoattrac-
tant, directs MSC homing. In addition, our previous study
suggested that SDF-1 secreted from dental pulp and PDL
cells retains the ability to promote the recruitment of BM-
MSCs [21–23]. MCP-1 is a chemokine that is induced under
conditions of oxidative stress [24]. Recently, we proposed
a novel mechanism for the promotion of the migration of
BM-MSCs via the scrapie responsive gene 1 (SCRG1)/bone
marrow stromal cell antigen 1 (BST1) axis through the
activation of the FAK/PI3K/Akt signaling pathway in an
autocrine/paracrine manner [25]. Our results also suggested
that the SCRG1/BST1 axis promotes the tissue-regenerative
ability ofMSCs by stimulating andmaintaining their stem cell
activity.

Many recent studies have demonstrated that MSCs pos-
sess immunomodulatory properties [26, 27]. The immuno-
suppressive effect of transplanted MSCs has also been
demonstrated in acute severe graft-versus-host disease [28]
and in multiple-system atrophy [29]. In addition, MSCs
can induce peripheral tolerance and migrate to injured
tissues, where they can inhibit the release of proinflammatory
cytokines and promote the survival of damaged cells [26].
For example, the therapeutic benefit of MSC transplantation
has been observed in acute lung injury [30], myocardial
infarction [31], acute renal failure [32], cerebral ischemia
[33], and Alzheimer’s disease [34]. MSCs can directly inhibit
the proliferation of T lymphocytes and microglial cells
and can negatively modulate the cytokine-secretion pro-
file of dendritic cells and monocytes and/or macrophages
[35–38].

Previously, we reported that the expression levels of
inflammation-related chemokines associated with MCP-1
were enhanced by stimulation with IL-1𝛽 and/or IL-6/sIL-6R
in gingival fibroblasts [39]. The aim of the present study was
to investigate the regulatory mechanism of PDL-fibroblasts
(PDL-Fs) on the anti-inflammatory and osteogenic abilities
of BM-MSCs. We examined the expression of MCP-1 in
PDL-Fs stimulated with the inflammatory cytokines inter-
leukin (IL)-1𝛽, IL-6/soluble IL-6 receptor (sIL-6R), or tumor
necrosis factor (TNF)-𝛼, and its effect on the recruitment of
MSCs into PDL inflammatory tissues in vivo. Furthermore,
we used a direct-contact coculture system between MSCs
and PDL-Fs to examine the expression of anti-inflammatory
and inflammatory cytokines and stem cell markers known to
play an important role in the self-renewal and maintenance
of multipotency of MSCs. These results can provide insight
into the molecular mechanism and key factors contributing
to the migration and homing of BM-MSCs into the PDL
inflammatory tissue, which can be useful for enhancing
bone regeneration in damaged PDL tissue with stem cell
therapy.

2. Materials and Methods

2.1. Cytokines. Recombinant human IL-1𝛽, IL-6, TNF-𝛼,
MCP-1, and SDF-1𝛼 were purchased from Miltenyi Biotec
(Bergisch Gladbach, Germany). The cells were treated with
10 ng/mL of IL-1𝛽, IL-6, TNF-𝛼, MCP-1, and SDF-1𝛼 at

various time points. Soluble IL-6 receptor (sIL-6R) was
provided by Prospec-Tany TechnoGene (Ness Ziona, Israel).
IL-6 was added in conjunction with 10 ng/mL of sIL-6R
[39].

2.2. Cell Culture. We previously reported the process for the
establishment and culture method for MSC lines derived
from the bone marrow of mice expressing green fluorescent
protein (GFP) [40, 41]. SG2 cells, a transforming growth
factor (TGF)-𝛽-responsive MSC line, were cultured in Dul-
becco’s modified Eagle’s medium (DMEM; Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 10% fetal bovine
serum (FBS; BI Biological Industries, Kibbutz Beit Haemek,
Israel) at 37∘C under hypoxic conditions (5% O

2
, 5% CO

2
,

and 90% N
2
). The isolation of rat PDL-Fs and establishment

of single cell-derived cultures (SCDCs) have been previously
described [42]. SCDC2 cells were cultured on type I collagen-
coated plastic dishes (Sumilon Celltight Plate, Sumitomo
Bakelite Co., Tokyo, Japan) in Ham’s F-12 (Sigma-Aldrich)
supplemented with 2mM glutamine (100x solution; Gibco),
10% FBS, 10 ng/mL fibroblast growth factor (FGF)-1 (R&D
Systems Inc., Minneapolis, MN, USA), 15𝜇g/mL heparin
(Sigma-Aldrich), and penicillin (Gibco, Carlsbad, CA, USA)
in a humidified atmosphere of 5% CO

2
at 37∘C. Human

gingival fibroblasts (HGFs) were cultured in DMEM (Sigma-
Aldrich) supplemented with 10% FBS (BI Biological Indus-
tries) at 37∘C under 5%CO

2
according to our previous report

[39].

2.3. Coculture System. SG2 cells and SCDC2 cells or HGFs
were cultured in a direct coculture system and indirect
coculture system. Direct coculture (CC) was performed in a
monolayer at a 50 : 50 ratio (4.0 × 105 cell/well) in six-well
plates (Sumilon) [43]. Indirect coculture was performed in
a transwell coculture system (TW) [44]. The TW coculture
system consisted of a polycarbonate transwell chamber,
which can be inserted into the well of standard 24-well plates.
SG2 cells (1.0× 105 cell/well) were seeded on the bottomof the
24-well culture plates. Then, SCDC2 cells or HGFs (1.0 × 105
cell/well) were seeded on the upper membrane (pore size of
0.4 𝜇m) of the transwell chamber. The cells were maintained
in Ham’s F-12 supplemented with 2mM glutamine (100x
solution), 10% FBS, 10 ng/mL FGF-1, 15 𝜇g/mL heparin, and
penicillin in a humidified atmosphere of 5% CO

2
at 37∘C.

2.4. Quantitative Reverse Transcription-Polymerase Chain
Reaction (RT-qPCR). Total RNAs were isolated with ISO-
GEN reagent (Nippon Gene, Toyama, Japan) and first-stand
cDNAwas synthesized with the PrimerScript RT Reagent Kit
(Takara Bio, Shiga, Japan) according to the manufacturer’s
instructions. RT-qPCR was performed on a Thermal Cycler
Dice Real Time System (Takara Bio) with SYBR Premix
Ex Taq II (Takara Bio) and specific oligonucleotide primers
(Table 1) using a two-step cycle procedure (denaturation at
95∘C for 5 s and annealing and extension at 60∘C for 30 s)
for 40 cycles. For each PCR run, cDNA derived from 50 ng
total RNA as a template and 0.4𝜇M of each primer pair was
used. The mRNA expression level was normalized to that of
glyceraldehyde 3-phosphate dehydrogenase (Gapdh), and the
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Table 1: Primer sequences for qRT-PCR.

Target
gene Reactivity Primer (5󸀠-3󸀠)

Gapdh
Rat F: GGCACAGTCAAGGCTGAGAATG

R: ATGGTGGTGAAGACGCCAGTA

Mouse F: TGTGTCCGTCGTGGATCTGA
R: TTGCTGTTGAAGTCGCAGGAG

Mcp-1 Rat F: CTATGCAGGTCTCTGTCACGCTTC
R: CAGCCGACTCATTGGGATCA

Sdf-1 Rat F: GAGCCAACGTCAAACATCTGAA
R: TCCAGGTACTCTTGGATCCACTTTA

Il-4 Mouse F: ACGGAGATGGATGTGCCAAAC
R: AGCACCTTGGAAGCCCTACAGA

Il-6 Mouse F: CAACGATGATGCACTTGCAGA
R: CTCCAGGTAGCTATGGTACTCCAGA

Il-10 Mouse F: GCCAGAGCCACATGCTCCTA
R: GATAAGGCTTGGCAACCCAAGTAA

Tgf-𝛽 Mouse F: TACGGCAGTGGCTGAACCAA
R: CGGTTCATGTCATGGATGGTG

relative amount of eachmRNA in each sample was calculated
using the ΔΔCq method. The relative mRNA expression
levels are expressed as the fold increase or decrease relative
to the control.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). SCDC2
cells were stimulated with or without 10 ng/mL of IL-1𝛽, IL-6,
or TNF-𝛼 for 48 h. The amount of secreted chemokines was
measured using sandwich ELISA kits for rat MCP-1 (R&D
Systems Inc.) and rat SDF-1𝛼 (Abnova, Taipei City, Taiwan).
SG2 cells were directly cocultured with SCDC2 cells for 48 h.
The cytokines produced from the SG2 cells into the medium
were quantified using sandwich ELISA kits for mouse IL-
10 (R&D Systems Inc.), mouse TGF-𝛽 (Abcam, Cambridge,
UK), and mouse IL-6 (R&D Systems Inc.) with specific
antibodies that do not cross-react with rat IL-10, TGF-𝛽, and
IL-6. The target proteins were measured according to the
manufacturer’s instructions. The absorbance was measured
using an MPR-A4i microplate reader (Tosoh Corp., Tokyo,
Japan).

2.6. Flow Cytometry Analysis. SG2 cells directly or indirectly
cocultured with SCDC2 cells were suspended in ice-cold
phosphate-buffered saline (PBS) containing 0.5% FBS and
2mM ethylenediaminetetraacetic acid (EDTA). The cells
were incubated with phycoerythrin- (PE-) conjugated anti-
mouse SCA-1, CD44, and CD90 antibodies (Miltenyi Biotec)
for 1 h at 4∘C in the dark. Acquisition was performed with an
EPICS XL ADC System (Beckman Coulter, Brea, CA, USA).
Measurement of fluorescence intensity relative to PE in SG2
cells was performed after gating according to the fluorescence
of GFP.

2.7. Transwell Migration Assay. The migration assay was
performed as described previously [25], using transwell cell
culture inserts (BD Bioscience, Franklin Lakes, NJ, USA) that
were 6.5mm in diameter with 8 𝜇m pore filters. The cells
(5.0 × 104 cells/well) were suspended in 350𝜇L of serum-
free DMEM containing 0.1% bovine serum albumin (Sigma-
Aldrich) and seeded into the upper well; 600𝜇L of 10%
FBS-supplemented DMEM with or without 10 ng/mL MCP-
1 and 100 ng/mL anti-MCP-1 neutralizing antibody (Abcam)
was placed in the lower well of the transwell plate. After
incubation for 6 h at 37∘C under hypoxic conditions, cells
that had not migrated from the upper side of the filter were
scraped off with a cotton swab, and the membrane was
fixed in 4% paraformaldehyde in PBS. After washing with
PBS, the cells that had migrated onto the underside of the
membrane were labeled with DAPI (1 : 1,000; Kirkegaard &
Perry Laboratories, Gaithersburg, MD, USA) and counted
under a fluorescence microscope in five high-power fields
(400x magnification; Olympus IX70; Olympus Corp., Tokyo,
Japan).

2.8. Stemness Investigation. SCDC2 cells as feeder cells were
precultured to confluence and then fixed with methanol. SG2
cells were CC cocultured on the fixed feeder SCDC2 cells.

Osteogenic and adipogenic differentiation was reported
in our previous paper [25]. The CC cocultured SG2 cells
were incubated in osteogenic induction medium for 10
days. Bone matrix mineralization was evaluated by alizarin
red S (Sigma) staining. Alizarin red S was extracted by
adding 10% cetylpyridinium chloride (Sigma) in 8mM
Na
2
HPO
4

(Merck Millipore, Darmstadt, Germany) and
1.5mM KH

2
PO
4
(Merck), and absorbance was measured at

540 nm using an MPR-A4i microplate reader (Tosoh Corp.).
To induce adipogenic differentiation, CC cocultured SG2
cells were cultured in adipogenic differentiation medium for
5 days. Lipid droplets were stained with Oil Red O (Sigma-
Aldrich). Oil Red O stain was quantified by extraction from
lipid droplets with dimethyl sulfoxide (DMSO, Sigma) and
absorbance was measured at 540 nm.

Cell proliferation was analyzed using a colorimetric assay
for cleavage of the tetrazolium salt WST-1 (Roche Diagnos-
tics, Basel, Switzerland) by mitochondrial dehydrogenases in
viable cells. The CC cocultured SG2 cells were cultured in
growth medium for 6 days. Cell proliferation was evaluated
by measuring the absorbance at 450 nm on an MPR-A4i
microplate reader (Tosoh Corp.) according to the manufac-
turer’s instructions.

SG2 cells CC cocultured for 48 h were stripped by 0.25%
trypsin containing 1mMEDTA and themigratory ability was
investigated as described previously.

2.9. Statistical Analysis. All experiments were repeated at
least three times. Representative images or data are shown.
The numerical data are presented as the mean ± standard
deviation. Differences in the mean and percentages between
the control and treatment groups were statistically analyzed
using paired two-tailed Student’s 𝑡-tests, and 𝑃 < 0.05 was
considered statistically significant.
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Figure 1: Inflammatory cytokines promote MCP-1 production in SCDC2 cells. SCDC2 cells were stimulated with or without 10 ng/mL of
IL-1𝛽, IL-6/sIL-6R, or TNF-𝛼. (a, b) mRNA expression levels were investigated by RT-qPCR using rat-specific primers. Reported values
are normalized to Gapdh expression. The results are expressed as the fold change relative to the respective control (-). (c, d) The amount of
secreted chemokines wasmeasured using sandwich ELISA kits for rat-specificMCP-1 and SDF-1𝛼. Data are presented as themean ± standard
deviation. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 as compared with the unstimulated control (-).

3. Results

3.1. Inflammatory Cytokines Promote MCP-1 Production in
SCDC2 Cells. As shown in Figure 1, MCP-1 mRNA expres-
sion and protein secretion into the culture medium were
significantly enhanced by stimulation with inflammatory
cytokines such as IL-1𝛽, IL-6, and TNF-𝛼 in the PDL-F
SCDC2 cells (Figures 1(a) and 1(b)). By contrast, the secretion
of SDF-1𝛼 protein, which is a chemokine involved in the
migration of MSCs, similar to MCP-1, was not enhanced
by stimulation with these cytokines in SCDC2 cells (Figures
1(c) and 1(d)). These results indicated that inflammatory
cytokines specifically enhanced the production of MCP-1 in
PDL-Fs.

3.2. MCP-1 Specifically Induces the Migration of SG2 Cells
RatherThanThat of SCDC2Cells. MCP-1 is a chemokine that
is known to strongly chemoattract MSCs through interaction
with its unique receptor, CCR2. We therefore investigated
the migratory activity of the mouse BM-MSC line SG2
stimulated byMCP-1.The number of transwell-migrated SG2
cells stimulated with MCP-1 was more than double that of
the control cells (Figure 2(a)); this induction was completely
canceled by anti-MCP-1 neutralizing antibody. In contrast,
MCP-1 did not induce the migratory activity of SCDC2 cells
(Figure 2(b)). These results indicated that MCP-1 specifically
induced the migratory activity of MSCs rather than that of
PDL-Fs.
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Figure 2: MCP-1 specifically induces the migration of SG2 cells rather than that of SCDC2 cells. Transwell migration assay for SG-2 cells
(a) and SCDC2 cells (b) by stimulation with 10 ng/mL of MCP-1. Anti-MCP-1 neutralizing antibody (nAb) was also added with MCP-1 for
migration in SG2 cells (a).The cells thatmigrated to the underside of themembranewere labeledwithDAPI and counted under a fluorescence
microscope in five high-power fields. Data are presented as the mean ± standard deviation. ∗𝑃 < 0.05 as compared with the unstimulated
control (-) for each cell line.

3.3. Expression of Anti-Inflammatory Cytokines in SG2 Cells
Is Increased by Direct Coculture with SCDC2 Cells. Because
secretion of MCP-1, an MSC chemoattractant, from PDL-
Fs was increased by the stimulation with inflammatory
cytokines, we hypothesized that the MCP-1-migrated MSCs
would home to the inflammatory PDL tissue and make
direct contact with PDL-Fs. Under the CC coculture system
betweenMSCs and PDL-Fs, the levels of cytokine production
in SG2 cells were investigated by RT-qPCR and ELISA using
mouse-specific primers and antibodies. The mRNA and pro-
tein expression levels of the anti-inflammatory cytokines IL-
10 and TGF-𝛽 were significantly higher in the CC coculture
with SCDC2 cells than those in SG2 cells cultured alone
(Figures 3(a), 3(b), 3(c), and 3(d)). Interestingly, the increased
expressions of these anti-inflammatory cytokines were not
observed under CC coculture with HGFs. Such promotion
of the expression of anti-inflammatory cytokines from SG2
cells was not observed in the TW coculture system. In
contrast, under the CC coculture with SCDC2 cells, the
mRNA and protein expression levels of the inflammatory
cytokine IL-6 in SG2 cells were significantly lower than those
in SG2 cells cultured alone (Figures 3(e) and 3(f)), which
was not observed in the TW coculture. Suppression of IL-10
expression was also observed under the CC coculture with
HGFs. These results indicated that the anti-inflammatory
activity of MSCs is induced by cell-to-cell contact between
MSCs and PDL-Fs. However, the expression of another anti-
inflammatory cytokine, IL-4, was not detected in any culture
condition (data not shown).

3.4. MSC Stemness of SG2 Cells Is Enhanced by Direct
Coculture with SCDC2 Cells. The cell-surfacemarkers CD44,
CD90, and SCA-1 on MSCs are known to independently

and/or cooperatively play important roles for maintenance
of the stemness of MSCs [45–47]. Therefore, we examined
the expression of these MSC markers in SG2 cells that
directly contacted SCDC2 cells. As shown in Figures 4(a)–
4(c), the mouse MSC markers SCA-1, CD44, and CD90 were
vigorously expressed in SG2 cells under the CC coculture
system but not in SG2 cells cultured alone. In addition,
the potential for osteogenic and adipogenic differentiation
(Figures 4(d)–4(f)) as well as migration ability (Figure 4(g))
in SG2 cells was enhanced under the CC coculture sys-
tem. Interestingly, coculture with SCDC2 cells decreased
the proliferation of SG2 cells (Figure 4(h)). In general, cell
proliferation is not compatible with differentiation and prolif-
eration/differentiation switches in various cell types [48–50].
Therefore, these results suggest that the stemness of MSCs
could be enhanced by their direct cell adhesion to PDL-Fs in
damaged PDL tissues.

4. Discussion

Our previous study demonstrated that the expression of
proinflammatory genes was promoted by stimulation with
IL-1𝛽 and IL-6/sIL-6R in gingival fibroblasts [39]. In addi-
tion, expression of inflammation-related chemokines such
as MCP-1 was enhanced by costimulation with IL-1𝛽 and
IL-6/sIL-6R in gingival fibroblasts in the same study. MCP-
1 is produced by many cell types, including fibroblasts and
endothelial, epithelial, smooth muscle, mesangial, astrocytic,
monocytic, and microglial cells [51–54]. Here, we focused on
the effect of inflammatory cytokines on PDL-Fs, as another
constituent cell type of the oral tissue. The results showed
that the production of MCP-1 was significantly enhanced
by stimulation with inflammatory cytokines such as IL-1𝛽,



6 Stem Cells International

N.D N.D N.D

IL-10

SG2 
alone

TW with
SCDC2 

CC with 
SCDC2 

CC with 
HGF 

0.E + 00

5.E − 07

1.E − 06

2.E − 06

2.E − 06

3.E − 06

m
RN

A
 ex

pr
es

sio
n 

(/
G

A
PD

H
)

(a)

IL-10

SG2 
alone

CC with 
SCDC2 

0

10

20

30

Pr
ot

ei
n 

se
cr

et
io

n 
(p

g/
m

L)

∗

(b)

∗∗∗∗
∗∗

SG2 
alone

TW with
SCDC2 

CC with 
SCDC2 

CC with 
HGF 

0

2.5

5

7.5

10

12.5

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

TGF-𝛽

(c)

SG2 
alone

CC with 
SCDC2 

∗

0

500

1000

1500

2000

Pr
ot

ei
n 

se
cr

et
io

n 
(p

g/
m

L)

TGF-𝛽

(d)

IL-6
∗

∗

SG2 
alone

TW with
SCDC2 

CC with 
SCDC2 

CC with 
HGF 

0

0.5

1

1.5

2

2.5

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

(e)

SG2 
alone

CC with 
SCDC2 

IL-6
∗

0

500

1000

1500

Pr
ot

ei
n 

se
cr

et
io

n 
(p

g/
m

L)

(f)

Figure 3: Expression levels of the anti-inflammatory cytokines IL-10 and TGF-𝛽 in SG2 cells increased by direct-contact coculture between
SG2 and SCDC2 cells, whereas IL-6 expression decreased. SG2 cells were cocultured with SCDC2 cells or HGFs in a direct (CC) coculture
system and an indirect transwell (TW) coculture system. (a, c, e) mRNA expression levels were investigated by RT-qPCR using rat-specific
primers. Reported values are normalized to Gapdh expression. The results are expressed as the fold change relative to the respective control
(SG2 alone). (b, d, f) Cytokines produced from the SG2 cells were quantified using sandwich ELISAwithmouse-specific antibodies that show
no cross-reactivity with those of rats. Quantified target proteins are presented as the mean ± standard deviations. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01.

IL-6/sIL-6R, and TNF-𝛼 in PDL-Fs and SCDC2 cells. MCP-
1 transduces signals through the chemokine receptor CCR2,
which is primarily involved in the recruitment of monocytes
to the sites of inflammation, and is also expressed on MSCs
[17, 55]. Previous studies have shown that MCP-1 induces
the migration of human and murine BM-MSCs via transwell

migration assays [56, 57] as well as in vivo experiments [58].
Some recent studies demonstrated that MCP-1 is one of the
factors associated with the immune modulation caused by
MSCs. In particular, MCP-1 secreted fromMSCs induced the
FasL-dependent apoptosis of T lymphocytes, and the apop-
totic T cells then stimulated macrophages to secrete higher
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Figure 4: Continued.
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Figure 4: MSC stemness of SG2 cells is enhanced by direct coculture with SCDC2 cells. Cell-surface expression levels of SCA-1 (a), CD44
(b), and CD90 (c) were analyzed with each mouse-specific antibody in SG2 cells alone (blue), SG2 cells directly cocultured with SCDC2 cells
(red), and an isotype control IgG (black) using flow cytometry. (d) SG2 cells were directly (CC) cocultured on the fixed feeder SCDC2 cells
as described in Section 2.The SG2 cells were incubated in osteogenic (upper panel) or adipogenic (lower panel) induction medium.The cells
were evaluated for extracellular matrix mineralization by alizarin red or lipid droplets by Oil Red staining. (e) Alizarin red was extracted
with 10% cetylpyridinium chloride and absorbance was measured at 540 nm. (f) Oil Red O stain was extracted with DMSO and absorbance
was measured at 540 nm. (g) The migratory ability of CC cocultured SG2 cells was investigated by a transwell migration assay. (h) The cell
proliferation of CC cocultured SG2 cells was examined by aWST-1 assay.The results are expressed as the fold change relative to the respective
control (SG2 alone). Data are presented as the mean ± standard deviation. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01.

levels of TGF-𝛽, which is associated with the generation of
CD4+FoxP3+ regulatory T cells (Tregs) [59]. MCP-1 secreted
from MSCs was also shown to exhibit an antiapoptotic
effect on embryonic cardiomyoblasts through inhibition of
caspase 3 [56]. Therefore, there is evidence to suggest the
dual function of MCP-1 (proapoptotic or antiapoptotic),
which might depend on the microenvironment surrounding
the MSC-targeted cells. MCP-1 has been shown to induce
MSCs to home towards various sites, including sites of
inflammation, ischemic damage, trauma, or a developing
malignant process, in an autocrine manner, and the cells
then exhibit immunomodulating characteristics after homing
[56]. Interestingly, in the present study, MCP-1 specifically
induced the migration of BM-MSCs but not that of PDL-
Fs, suggesting that MCP-1 specifically recruits MSCs to the
inflammatory site but not normal fibroblasts in the damaged
PDL tissue. To respond to this proposal, we investigated the
mRNA expressions of CCR2 in SG2 and SCDC2 cells by
RT-qPCR. Although expression levels cannot be compared
because of different species and primers, mRNA of CCR2
was detected in both cells (data not shown). Therefore, the
differential statuses of MCP-1-induced migratory activities
between SG2 cells and SCDC2 cells may be due to the
differential variances of intracellular signal transduction
mechanisms downstream of CCR2 between these cells. We

hypothesized that the migrated and homed BM-MSCs in
the PDL tissue make active and direct contact with PDL-
Fs in the PDL inflammatory tissue. MCP-1 is also involved
in homing to inflamed tissues in immune-related cells such
as macrophage and T cells [24]. On the other hand, MSCs
suppress inflammation by immunosuppression against these
cells [26, 27]. Therefore, chronicity of inflammation is sup-
pressed by MSCs homed into inflamed tissues by MCP-1.

Many recent studies have demonstrated that MSCs
exhibit their immunomodulatory properties by cell-to-cell
contacts, as well as through the actions of secreted growth
factors, cytokines, and chemokines [26, 27]. In this study,
we demonstrated that the production of anti-inflammatory
cytokines such as IL-10 and TGF-𝛽 increased in BM-MSCs
by direct contact with PDL-Fs, whereas production of the
inflammatory cytokine IL-6 decreased. We investigated the
production of cytokines fromSG2 cells coculturedwithHGFs
as the other cell types. As a result, mRNA expressions of IL-
10 and TGF-𝛽 as anti-inflammatory cytokines from SG2 cells
under coculture with HGFs were not enhanced. However,
mRNA expression of IL-6 as an inflammatory cytokine was
suppressed in HGFs as well as coculture with SCDC2 cells.
These results strongly suggested that periodontal fibroblast
SCDC2 cells specifically enhance the expression of anti-
inflammatory cytokines in MSCs by the cell-to-cell adhesion
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between these cells. Therefore, MSCs that adhere to PDL-
Fs play an immunomodulatory role that possibly facilitates
the termination of inflammation during the wound healing
process. One of the most prominent immunomodulatory
cytokines produced and constitutively secreted by MSCs is
TGF-𝛽. As a pleiotropic cytokine, TGF-𝛽 regulates multiple
fundamental cellular functions, including proliferation, dif-
ferentiation, migration, adhesion, and apoptosis, that affect
numerous biological processes such as development, wound
healing, carcinogenesis, angiogenesis, and immune responses
[60]. In addition, IL-10 is the cytokine most commonly
discussed in relation to the immunoregulatory ability of
MSCs. Although the conditions under which MSCs are most
likely to secrete IL-10 are not definitely determined, it has
been shown that MSCs secrete factors that upregulate the
secretion of IL-10 by peripheral bloodmononuclear cells [61],
as well as by tolerogenic macrophages [62] and dendritic
cells [63–65]. Yan et al. [66] reported that MSC-exposed
Tregs have greater immunosuppressive capability than those
that have not been cocultured with MSCs. They further
suggested that IL-10 might be responsible for the enhanced
suppressive capability of the MSC-exposed Treg cells. IL-6
has recently been demonstrated to be a pleiotropic cytokine,
with a key role in a multitude of processes such as regulation
of the immune response, hematopoiesis, inflammation, cell
survival, apoptosis, cell proliferation, and oncogenesis [67,
68]. Cells expressing gp130 can bind to the IL-6/sIL-6R
complex in a process known as transsignaling, which makes
many cell populations susceptible to the effects of IL-6 [69,
70]. IL-6 secretion from MSCs has been demonstrated in
both mice and humans [71, 72], and is detected either after
induction with TNF𝛼, IL-1𝛽, and IFN𝛾, or spontaneously
[63, 71, 73–76].

In addition, the expression levels of the mouse MSC
markers SCA-1, CD44, and CD90 in BM-MSCs were upreg-
ulated by their cell-to-cell contact with PDL-Fs. As described
above, various kinds of cell-surfacemarkers, includingCD44,
CD90, and SCA-1, have been identified in mouse BM-MSCs
[77]. CD44 is known to positively regulate the survival and
migration of MSCs [45]. A previous report demonstrated
that CD90 plays important roles in the attenuation of the
commitment of MSCs, possibly resulting in the maintenance
of their multipotency [46]. In addition, SCA-1 is known to
positively regulate the self-renewal and survival of MSCs
[47]. Thus, CD44, CD90, and SCA-1 independently and/or
cooperatively play important roles for the maintenance of
the stemness of MSCs. In fact, in the present study, the
osteogenic and adipogenic differentiation status as well as
migration ability of BM-MSCs directly cocultured with PDL-
Fs were enhanced. Upon activation by tissue damage, MSCs
contribute to the tissue repair process through a multitude
of properties such as migration and differentiation. After
homing into a damaged tissue, the cell-cell adhesion between
MSCs and other types of cells is essential forMSC-dependent
tissue regeneration in vivo. Our recent study suggested
that the SCRG1/BST1 axis maintains the stemness and the
expression of CD271, an MSC marker, of human BM-MSCs
[25]. In addition, we demonstrated that the expression of
another MSC marker, CD106, was dependent on cell density

[78, 79]. Here, we demonstrated that the direct adhesion of
MSCs to PDL-Fs enhances the stemness of MSCs, resulting
in tissue repair and regeneration of the damaged PDL tissue.

Thus, we demonstrated that the anti-inflammatory and
differentiation abilities of MSCs could be enhanced by their
direct adhesion to PDL-Fs. Our findings provide a basis for
the establishment of novel clinical strategies for periodontitis
using MSCs.

5. Conclusions

Our results provide insight into the mechanism underly-
ing the role of MSCs in tissue repair and regeneration of
the PDL. In brief, MCP-1, which is secreted by fibroblasts
under stimulation with inflammatory cytokines at a PDL
inflammatory lesion, induces the migration and homing of
BM-MSCs into the PDL inflammatory tissue. These MSCs
that adhered to PDL-Fs play an immunomodulatory role to
facilitate the termination of inflammation during the wound
healing process. Furthermore, this adhesion between MSCs
and PDL-Fs upregulates the expression of stem cell markers
in MSCs, possibly resulting in the enhancement of their
stemness to promote tissue repair and regeneration in the
damaged PDL tissue.
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