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Summary 

Rhododendrol (RD) is a potent tyrosinase inhibitor that is metabolized to RD-quinone by 

tyrosinase, which may underlie the cytotoxicity of RD and leukoderma of the skin that may 

result. We have examined how forced expression of the NAD(P)H quinone dehydrogenase, 

quinone 1 (NQO1), a major quinone-reducing enzyme in cytosol, affects the survival of 

RD-treated cells. We found that treatment of the mouse melanoma cell line B16BL6 or normal 

human melanocytes with carnosic acid, a transcriptional inducer of the NQO1 gene, notably 

suppressed the cell killing effect of RD. This effect was mostly abolished by ES936, a highly 

specific NQO1 inhibitor. Moreover, conditional overexpression of the human NQO1 transgene 

in B16BL6 led to an expression-dependent increase of cell survival after RD treatment. Our 

results suggest that NQO1 attenuates the cytotoxicity of RD and/or its metabolites.  
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Significance 

The cytotoxicity of rhododendrol (RD) against melanin-producing cells is reported to result 

from its metabolite quinone compounds. The NAD(P)H dehydrogenase, quinone 1 (NQO1), a 

major quinone reducing enzyme, is retained at low levels in a basal state in many tissues. 

Treatment of a mouse melanoma cell line or human melanocytes with carnosic acid, an 

established transcriptional inducer of the NQO1 gene, renders cells resistant to RD, and 

inhibition of NQO1 activity eliminates this resistance. Results obtained by conditional 

expression of the human NQO1 transgene in mouse melanoma cells also support the pivotal role 

of NQO1 in detoxification of RD. 
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Introduction 

Rhododendrol (4-(4-hydroxyphenyl)-2-butanol, RD), a phenolic compound originally isolated 

from the azalea Rhododendron fauriaei, is a strong inhibitor of tyrosinase (Archangelsky 1901; 

Kawaguchi et al. 1942; Akazawa et al. 2006), a key enzyme for melanin biosynthesis that 

catalyzes the oxidation of tyrosine (del Marmol and Beermann 1996). The suppressive effect of 

RD on melanin production has been studied in view of its possible cosmetic applications, and 

subsequently it was added as an ingredient to a commercially available skin lightener produced 

by a cosmetics company in Japan. However, a considerable number of consumers developed 

leukoderma after using the RD-containing skin lightner, and the product was eventually recalled. 

Chemically induced leukoderma is characterized as cutaneous depigmentation caused by 

recurrent exposure to a specific substance that damages epidermal melanin-producing cells 

(Ghosh 2010). As a competitive inhibitor of tyrosinase, RD itself is oxidized by tyrosinase to 

RD-quinone or related compounds, which recent studies suggest are responsible for the 

cytotoxicity of RD and the resulting leukoderma (Ito et al. 2014; Sasaki et al. 2014). 

The NAD(P)H dehydrogenase, quinone 1 (NQO1, also known as DT-diaphorase), catalyzes the 

obligatory two-electron reduction of a range of quinone compounds to their hydroquinone forms, 

thus preventing the one-electron reduction that results in production of potentially harmful 

semiquinone radicals, a source of reactive oxygen species (ROS) (Siegel et al. 2012). 

Depending on the relative toxicity of the parental quinones and their reduced metabolites, 

NQO1 functions as either a detoxifier or a bioactivator for any given quinone compound (Siegel 

et al. 2012). NQO1 gene expression is under the control of the KEAP1/NRF2 transcription 

regulation system, together with genes encoding other phase II detoxification enzymes (Itoh et 
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al. 1997; Kensler et al. 2007). The transcriptional coactivator NRF2 is bound by the E3 

ubiquitin ligase KEAP1 in a basal state, sequestered in the cytosol, and constitutively 

ubiquitinated for proteasome-mediated degradation. In the presence of oxidative and/or 

electrophilic stress, sulfhydryl groups of key cysteine residues of KEAP1 are subjected to 

covalent modification, leading to inhibition of its E3 ligase activity. This results in accumulation 

and subsequent nuclear translocation of NRF2. A heterodimer of NRF2 and a small Maf factor 

binds to the electrophile/antioxidant response element (EpRE/ARE), up-regulating the 

transcription of a set of genes including NQO1 whose products exert a cytoprotective role 

against noxious stress in a coordinated manner. 

In the present study, we investigated how NQO1 activity modulates the cytotoxicity of RD 

against melanin-producing cells. To achieve ectopic overexpression of NQO1, we adopted two 

different approaches. The phytochemical carnosic acid (CA) is oxidized to a electrophilic 

quinone form within cells, which is a potent activator of the KEAP1/NRF2 system (Satoh et al. 

2008). We first explored the effect of CA on proliferation of RD-treated cells, and also 

established and characterized a cell line in which NQO1 expression is conditionally regulated. 

The results obtained from either of these approaches indicated a strong correlation between 

NQO1 expression and resistance to RD. Our observations suggest that the cytotoxicity of RD, 

probably mediated by quinone compounds, can be ameliorated by NQO1, and also that CA, or 

other KEAP1/NRF2 activator chemicals, could have potential cosmetic applications in 

combination with RD. 
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Results 

CA induces expression of NQO1 within the range of concentration for minimal cell killing 

To confirm the effect of CA as a KEAP1/NRF2 activator (Satoh et al. 2008) in our experimental 

setting, we treated B16BL6 mouse melanoma cells with increasing concentrations of CA for 24 

h and examined the cells for expression of NRF2 and one of its targets, NQO1. Although both 

NRF2 and NQO1 were hardly detectable in cells in an uninduced state, addition of CA as well 

as another established NRF2 activator, sulforaphane (Zhang et al. 1992; Zhang et al. 1994), 

clearly increased the cellular amounts of NRF2 and NQO1 in a dose-dependent manner (Figure 

1A). Treatment with 10 µM CA for 24 h, which resulted in quite robust induction of NQO1, 

only marginally compromised cell growth (Figure 1B). Even with 100 µM CA, cell growth was 

at least 70% of non-treated cells. The same concentrations of CA caused similar or slightly 

higher growth inhibition of TERT-immortalized human melanocytes (HEMn-LP/hTERT1, 

Figure 1B). We concluded that treatment with CA in the range of concentration for least toxicity 

elicits firm activation of the KEAP1/NRF2 system and consequent expression of NQO1. 

Recent work has shown that tyrosinase-dependent metabolites of RD have a high propensity for 

linkage with the cysteine residues of cellular proteins, thus inactivating them, which may 

account for at least some of the cytotoxicity of RD (Ito et al. 2015). This prompted us to 

investigate whether RD metabolites activate the KEAP1/NRF2 system by attacking the sensor 

cysteine residues of KEAP1. Contrary to our expectation, however, RD proved to be a much 

poorer activator of NRF2 than CA at the concentration that results in substantial growth 

inhibition (Supplementary Figure S1). 
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CA mitigates cytotoxicity of RD 

We next studied the cytotoxicity of RD in the absence or presence of CA, expecting that NQO1 

expression might modulate the toxicity of the RD-derived quinone compound. First, B16BL6, 

HEMn-LP/hTERT1 or normal human melanocytes (NHEM) were treated with RD alone at 

concentrations of 0 to 2 mM for 24 h, and cell growth was measured. The respective IC50 values 

were 230 μM for B16BL6, 119 μM for NHEM, and 178 μM for HEMn-LP/hTERT1 (Figure 

2A), being comparable to those reported previously for human melanocytes (Sasaki et al. 2014; 

Kasamatsu et al. 2014). When the cells were similarly treated with RD but in the presence of 0.5 

µM CA, the IC50 values increased by 5.5 to >11.2-fold (1260 µM, 840 µM and >2000 µM for 

B16BL6, NHEM, and HEMn-LP/hTERT1, respectively, Figure 2A). Treatment with 10 µM CA 

further increased the IC50 for B16BL6 to >2000 µM, indicating a dose-dependent attenuation 

effect of CA on RD cytotoxicity, which is consistent with the CA dose-dependent expression of 

NQO1 in this range. To demonstrate the pivotal role of NQO1 among dozens of NRF2 targets, 

we added ES936, a highly specific inhibitor for NQO1 (Winski et al. 2001), together with CA 

(Figure 2B). This mostly eliminated the effect of CA, suggesting that NQO1 was solely 

responsible for the CA-mediated dose decrement of RD. Note that ES936 suppressed the effect 

of CA but did not increase the sensitivity of the cells to RD. This probably indicates that the 

small amount of NQO1 in B16BL6 cells in a basal state (Figure 1A) hardly contributes to RD 

resistance. 

 

CA prevents RD-induced apoptosis of melanocytes 

We studied whether RD cytotoxicity involves induction of apoptotic cell death, and if so, how 



 8 

CA affects this process. B16BL6 or HEMn-LP/hTERT1 cells were treated with 10 or 50 µM RD 

for 72 h in the absence or presence of 25 µM CA, and the appearance of apoptosis marker 

proteins was examined. RD treatment induced cleavage of caspase 3 and poly ADP ribose 

polymerase (PARP) in HEMn-LP/hTERT1 at both concentrations of RD, and the induction was 

strongly suppressed by addition of CA (Figure 3). In contrast, only weak induction of cleavage 

of caspase 3 and PARP was observed in B16BL6 even in the presence of 50 µM RD, which was 

completely abrogated by CA. The difference in the rate of apoptosis induction between B16BL6 

and HEMn-LP/hTERT1 cells may partly explain the slight difference in their RD sensitivity 

(IC50: 230 µM versus 178 µM), or may simply reflect a difference in the mode of death between 

the two cell lines. 

 

Establishment of a cell line showing conditional NQO1 expression in an auxin-dependent 

manner 

To demonstrate the involvement of NQO1 in detoxification of RD more specifically, we 

established a cell line conditionally expressing NQO1 from B16BL6, making use of an 

auxin-inducible degron (AID) system (Nishimura et al. 2009). In the AID system, the 

plant-derived F-box protein TIR1 and the protein of interest fused with AID are co-expressed. 

Addition of the plant hormone auxin induces TIR1-dependent rapid ubiquitination of AID 

followed by proteasome-mediated degradation of the fusion protein usually within 1 h. This 

facilitates far more prompt shut-off of the target protein in comparison with a 

transcription-repression-based system. We inserted human NQO1 cDNA into the pAID1.1N 

plasmid and isolated stable clones from B16BL6. A clone showing high TIR1 and AID-NQO1 
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expression was selected and confirmed to show auxin-mediated degradation of AID-NQO1 

(B16BL6/pAO1). B16BL6/pAO1 constitutively expresses AID-NQO1 from the 

cytomegalovirus promoter at a level comparable to endogenous NQO1 induced by treatment 

with 10 µM CA (Figure 4A). AID-NQO1 quickly disappears after treatment with a synthetic 

auxin analogue, 1-naphthaleneacetic acid (1-NAA), for 1 h. We measured the growth of 

B16BL6/pAO1 after RD treatment. As expected, B16BL6/pAO1 was much more resistant to 

RD (IC50 > 2000 µM, Figure 4B) than its parental line B16BL16 (IC50 = 230 µM). Remarkably, 

addition of 1-NAA reduced the IC50 of RD from >2000 µM to 272 µM (Figure 4B), to a degree 

resembling that of the parental line. Another independent clone gave essentially the same results 

(data not shown). These observations strongly indicate that expression of NQO1 is almost solely 

responsible for CA-mediated attenuation of RD cytotoxicity. 

 

CA does not interfere with the inhibitory effect of RD on melanin synthesis 

We next examined whether CA hinders the inhibitory effect of RD on melanin synthesis. 

B16BL6 cells were cultured for 72 h in the presence of 2 or 10 µM RD with or without 0.5 µM 

CA. Cytotoxicity of both RD and CA is minimal under these conditions (Figure 1B, 2A). The 

pellets of cells treated with 10 µM RD were markedly lighter in color than those of untreated 

control cells or cells treated with 2 µM RD (Figure 5A). Addition of CA did not notably affect 

the lightening induced by RD. We quantified the melanin concentration by measuring the 

absorbance of a cell lysate at 500 nm (Figure 5B). The melanin level was reduced to 

approximately 50% with 2 μM RD treatment, and to 30% with 10 μM RD treatment. Again, 

addition of CA did not significantly change the inhibitory effect of RD.  
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Effect of RD and CA on melanin production and melanocyte survival in a 3D skin model 

To investigate the effect of CA on RD cytotoxicity against melanocytes in a setting closer to in 

vivo conditions, we utilized a commercial 3D culture model of human skin. The culture model 

was incubated for 10 or 14 days in medium containing 2 or 10 µM RD with or without 25 µM 

CA. In the control culture, obvious darkening was observed, reflecting proliferation of 

melanocytes and ongoing melanin synthesis during this period (Figure 5C). Addition of RD 

suppressed this darkening in a dose-dependent manner, and CA did not have any apparent effect 

on this suppression (Figure 5C). Microscopy of the immunostained sections revealed that most 

of the melan-A-positive cells in the basal layer, representing melanocytes, disappeared after 

treatment with 10 µM RD in the absence of CA (Figure 5D). This implies that suppression of 

darkening by RD alone may involve permanent elimination of melanin-producing cells. In 

contrast, about 60% of the melan-A-positive cells persisted in the sample treated simultaneously 

with RD and CA, in comparison with the control. Our observations suggest that CA also 

attenuates the cytotoxicity of RD without notably retarding the suppression of melanogenesis by 

RD under in vivo-mimicking conditions. 
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Discussion 

Our present results clearly demonstrated that forced expression of NQO1 mitigates the 

cytotoxicity of RD without notably affecting the inhibition of melanin synthesis. An obvious 

explanation for this is that NQO1 reduces quinone compounds originating from RD to less toxic 

catechol forms. One immediate metabolite of RD produced by tyrosinase oxidation is reported 

to be RD-quinone (Ito et al. 2014), which would be reduced to RD-catechol (hydroxy-RD) by 

NQO1. While the relative cytotoxicity of RD-quinone and RD-catechol has not been directly 

measured due to instability of the former (Sasaki et al. 2014; Kasamatsu et al. 2014; Okura et al. 

2015), it seems reasonable to assume that highly reactive RD-quinone may have higher 

cytotoxicity (Ito et al. 2015), and therefore that its reduction may imply detoxification. Other 

secondary quinones might also partly contribute to the cytotoxicity of RD (Ito et al. 2015). This 

issue remains to be clarified in a future study. 

The KEAP1/NRF2 system up-regulates a set of genes encoding phase II detoxification enzymes 

other than NQO1. These include GCLM and GCLC, whose products constitute 

glutamate-cysteine ligase, a rate-limiting enzyme for GSH production, as well as several genes 

encoding glutathione S-transferases (Malhotra et al. 2010; Suzuki et al. 2013). Since 

conjugation of GSH to quinone is regarded as a first line of cellular defense against quinone 

toxicity, it would be reasonable to assume that NRF2/KEAP1 activation may contribute to 

detoxification of RD by increasing not only NQO1, but also GSH within cells and activating 

conjugation. In the present study, however, forced expression of NQO1 alone was sufficient to 

decrease RD toxicity to almost the same level as that by CA-mediated detoxification. This 

observation suggests that NRF2 targets other than NQO1 play minor or redundant roles in 
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resistance to RD. 

NQO1 is also reported to modulate cell growth by stabilizing the tumor suppressor p53 (Asher 

et al. 2001; Asher et al. 2005). Although we have not examined the involvement of p53 in 

growth recovery after RD treatment, if NQO1 overexpression positively regulates p53 function 

by stabilizing it, that would result in either cell cycle arrest or activation of apoptosis, and be 

observed as growth inhibition of the cell population. However, this appears to contradict what 

we observed, and accordingly we do not consider p53 to play a major role in mitigation of RD 

toxicity by NQO1. 

An allelic variant of NQO1 with essentially no enzymatic activity, NQO1*2 (NQO1P187S, 

rs1800566 in dbSNP, Traver et al. 1992), is reported to exist at a high frequency, especially in 

Asian populations (allele frequency = 0.4187 in Asians versus 0.2107 in Europeans) according 

to the phase 3 May 2013 call set of the 1000 Genome Project (1000 Genomes Project 

Consortium et al. 2012). Whereas the amount of NQO1 in the basal state hardly contributed to 

growth recovery after RD treatment in our experiment using the B16BL6 mouse melanoma cell 

line, it might exert some influence in human skin in vivo, considering the varying degree of 

basal expression of NQO1 in different tissues (Siegel et al. 2012). While it is clear that the 

NQO1 genotype is not the sole determinant, since only 2% of RD consumers developed 

leukoderma (Nishigori et al. 2015), it would be of interest to investigate the genetic background 

of RD-induced leukoderma. In fact, for some antitumor quinones on which NQO1 may act as a 

bioactivator, polymorphism of NQO1 is reportedly associated with response to chemotherapy 

(Fagerholm et al. 2008; Jamieson et al. 2011). It should also be noted that application of CA 

may not be effective for individuals with homozygous NQO1-null alleles. 
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Methods 

Materials 

RS-Rhododendrol (RD) was kindly provided by Kanebo Cosmetics Inc. (Tokyo, Japan). 

Carnosic acid (CA), N-phenylthiourea (PTU), sulforaphan, and the NQO1 inhibitor ES936 were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Stock solutions were prepared by 

dissolving the chemicals in DMSO at 4 M (RD), 100 mM (CA), 100 mM (sulforaphan) and 20 

μM (ES936). All other reagents and chemicals were of high grade and commercially available. 

 

Cell culture and media 

All cells were maintained in a humidified atmosphere with 5% CO2 at 37°C. 

A murine melanoma cell line B16BL6 was obtained from RIKEN Cell Bank (Tsukuba, Japan) 

and cultured in RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA, USA) 

supplemented with 10% FBS. 

Primary cultures of normal human epidermal melanocytes (NHEM) were purchased from 

Kurabo Industries Ltd. (Osaka, Japan) and cultured in Medium 254 containing Human 

Melanocyte Growth Supplement (Kurabo Industries Ltd.), penicillin (100 U/ml), streptomycin 

(100 μg/ml), and 4-amphotericin (250 ng/ml). 

An immortalized human melanocyte line (HEMn-LP/hTERT1) established in our laboratory 

from the commercially available human melanocyte line HEMn-LP (Thermo Fisher Scientific) 

was cultured in DMEM (Thermo Fisher Scientific) supplemented with 1% Human Melanocyte 

Growth Supplement (Thermo Fisher Scientific). 

A three-dimensional human skin model MEL-300-A was purchased from Kurabo Industries Ltd. 
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(Osaka, Japan) and maintained in EPI-100LLMM medium as instructed by the manufacturer. 

 

Cell viability assay 

A Cell Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan), which utilizes water-soluble 

tetrazolium salts, was used to evaluate the proliferation of melanocytes or melanoma cells after 

drug treatment. Cells were seeded into 96-well plates (2000 cells/well) and cultured for 24 h 

prior to treatment with RD and/or CA. After the treatment, medium in each well was replaced 

with 100 µl of drug-free fresh medium and 10 μl of Cell Counting Kit-8 solution, incubated for 

an additional 1-2 h, and the absorbance of each well at 450 nm was measured with the use of a 

Multiskan Spectrum spectrophotometer (Thermo Fisher Scientific). 

 

Protein preparation and immunoblotting 

Cells at 80–90% confluence were washed twice with ice-chilled PBS, treated with 10% TCA for 

30 min on ice, and then scraped off into a tube. The cell pellet was washed once with deionized 

water and lysed in 9 M urea, 2% Triton X-100 and 1% DTT. Protein concentration was 

measured with a BCA protein assay kit (Merck Millipore, Billerica, MA, USA) before addition 

of DTT. Protein samples were electrophoresed on 4–12% NuPAGE Bis-Tris gels (Thermo 

Fisher Scientific) for 30 min at 200 V and then transferred onto polyvinylidene fluoride transfer 

membranes (Pall Corporation, Port Washington, NY, USA). The membranes were blocked with 

5% non-fat dried milk (#9999, Cell Signaling Technology) in 1 × TBS-T for 1 h at room 

temperature and then immunoreacted with an appropriate primary antibody overnight at 4°C 

and with a HRP-conjugated secondary antibody (GE Healthcare Life Sciences, 
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Buckinghamshire, UK) for 1 h at room temperature. Signals were detected with ECL prime 

detection reagents (GE Healthcare Life Sciences) and ChemiDoc XRS (Bio-Rad Laboratories, 

Hercules, CA, USA). The intensity of the detected signals was quantified using ImageJ/Fiji 

software (Schindelin et al. 2012) and normalized against the β-actin signal. Antibodies against 

NRF2 (#8882, 1:500 for immunoblotting), NQO1 (#3187, 1:1000), cleaved caspase 3 (#9661S, 

1:1000) and PARP1 (#9544S, 1:1000) were from Cell Signaling Technology (Danvers, MA, 

USA). The antibody against β-actin was from Sigma-Aldrich (#A2228, 1:1000). Electrophoresis 

and immunoblotting were repeated at least three times with independent sample preparations 

and confirmed to be reproducible. 

 

Stable overexpression of NQO1 in B16BL6 cells  

Total RNA was prepared from a human melanoma cell line A7, in which KEAP1/NRF2 is 

constitutively activated (Miura et al. 2013). cDNA was synthesized with oligo(dT) and 

SuperScript III (Thermo Fisher Scientific), and NQO1 cDNA was amplified by PCR using KOD 

Plus NEO DNA polymerase (Toyobo, Osaka, Japan) and a specific primer pair,  

5′-GGGGGGATATCATGGTCGGCAGAAGAGCACTGAT-3′ and 

5′-GGGGGACGCGTTCATTTTCTAGCTTTGATCTGGT-3′. The ends of the amplified cDNA 

fragment were digested with EcoRV and MluI, subcloned into the pAID-N1.1 vector (BioROIS, 

Mishima, Japan), and termed pAO1. The sequence of the entire length of the inserted NQO1 

cDNA was verified using a 3500 Genetic Analyzer (Thermo Fisher Scientific). pAO1 was 

linearized with AflII to increase the integration efficiency, and transfected into B16BL6 cells 

using Lipofectamine 3000 (Thermo Fisher Scientific) in accordance with the manufacturer’s 
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protocol. Stably transfected cells were selected in medium containing 1000 μg/ml G418 for 7 

days, and several clones were isolated by limiting dilution. The clones were examined for 

expression and 1-NAA-dependent degradation of the AID-NQO1 fusion protein by 

immunoblotting. 

 

Measurement of melanin content  

Melanin was quantified spectroscopically as reported previously (Yokota et al. 1998). Three 

hundred thousand cells were plated on a 60-mm plastic dish. After attachment, the cells were 

treated with 2 or 10 µM RD and/or 0.5 µM CA for 72 h. The cells were then harvested by 

trypsinization, fixed with 5% TCA for 90 min, washed with ethanol-ether (3:1) and ether, and 

dissolved in 0.5 ml of Soluene-350 (PerkinElmer, Inc., Waltham, MA, USA) at 80°C for 1 h. 

The absorbance at 500 nm was measured with a Multiskan Spectrum instrument (Thermo Fisher 

Scientific). 

 

Evaluation of melanocyte viability and melanogenesis in 3D human skin models 

The human skin model was cultured in medium containing 2 or 10 µM RD with or without 0.5 

µM CA for 10 or 14 days with a change of medium every other day. After the treatment, 

photographs were taken for visual inspection of melanogenesis. For microscopic observation of 

melanocytes in the 3D model, samples were fixed with 4% formaldhyde after the 10 days of 

treatment, and embedded in paraffin. Four-micrometer-thick sections were cut and stained with 

hematoxylin and eosin. The sections were then immunostained using anti-melan A, following a 
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procedure described previously (Watanabe et al. 2013). The extent of immunohistochemical 

reactivity was estimated by light microscopy. 

 

Statistical analysis 

Data are presented as the mean ± SEM. Statistical significance of differences in the mean was 

assessed by Welch’s t-test using Microsoft Excel (Microsoft, Seattle, WA, USA). P <0.05 was 

considered to indicate statistical significance. Logistic function was fitted to the cell 

proliferation data points with the least squares estimates of the parameters. IC50 values were 

calculated from the fitted function. 
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Figure legends 

Figure 1. CA activates the KEAP1/NRF2 transcriptional program in a dose-dependent manner 

within the range of least toxicity. (A) BL16BL6 mouse melanoma cells were treated with CA at 

several different concentrations for 24 h, and the levels of NRF2 and NQO1 protein were 

examined with immunoblotting. Sulforaphane was used as a positive control (Zhang et al. 1992). 

(B) B16BL6 cells and human immortalized melanocytes (HEMn-LP/hTERT1) were treated 

with increasing concentrations of CA for 24 h, and the cell growth was assessed with a 

water-soluble tetrazolium salt-based assay (see Materials and Methods). The results are 

expressed as mean ± SEM of relative cell numbers relative to those of the untreated control in 

triplicate experiments. 

 

Figure 2. CA mitigates the cytotoxicity of RD by NQO1 activation. (A) B16BL6, 

HEMn-LP/hTERT1 or normal human melanocytes (NHEM) were treated with various 

concentrations of RD with or without 0.5 µM CA for 24 h, and cell growth was measured. In 

B16BL6, 10 µM CA induced further resistance to RD. (B) B16BL6 cells were treated with RD 

at concentrations of 0 to 2 mM and 0.5 µM CA with or without 100 nM ES936 for 24 h. ES936 

abolished most of the cytoprotective effect of CA on RD-treated cells. Results are expressed as 

mean ± SEM of triplicate experiments. 

 

Figure 3. CA prevents RD-induced apoptosis of melanocytes. B16BL6 or HEMn-LP/hTERT1 

were treated with 10 or 50 µM RD with or without 25 µM of CA for 72 h. Extracts of the 

treated cells were examined for cleavage of caspase-3 and PARP1. 
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Figure 4. Ectopic expression of NQO1 mitigates the cytotoxicity of RD. (A) Stable expression 

of AID-NQO1 in B16BL6/pAO1. B16BL6 or B16BL6/pAO1 cells were treated with increasing 

concentrations of CA and/or 0.5 µM auxin for 24 h, and examined for NQO1 expression using 

immunoblotting. B16BL6/pAO1 constitutively expressed the AID-NQO1 fusion protein to an 

extent comparable with that of endogenous NQO1 in the parental B16BL6 induced by treatment 

with 10 µM CA. AID-NQO1 promptly disappeared after addition of 0.5 mM 1-NAA. (B) 

B16BL6/pAO1 cells were treated with RD at concentrations of 0 to 2 mM with or without 0.5 

mM 1-NAA for 24 h, and cell proliferation was assessed. Results are expressed as mean ± SEM 

of triplicate experiments. 

 

Figure 5. CA treatment does not notably hinder the suppressive effect of RD on melanogenesis 

while increasing the survival of melanocytes against RD in a 3D culture model. (A) B16BL6 

cell pellets after RD and/or CA treatment. B16BL6 cells were cultured for 72 h in the presence 

of 2 or 10 µM RD with or without 0.5 µM CA. PTU, an established tyrosinase inhibitor with a 

non-competitive mechanism (Chang 2009), was used as a positive control. (B) Relative amounts 

of melanin in BL16BL6 cells after RD and/or CA treatment. Absorbance of extracts of the 

treated cells at 500 nm was measured with a spectrophotometer. Results are expressed as mean 

± SEM of triplicate experiments. (**P <0.01, ***P <0.001, Welch’s t-test). (C) Photographs of 

the 3D human skin model after the treatment. The skin model was placed in 6-well plates and 

cultured in medium containing 10 µM RD or 2.0 µM RD with or without 0.5 µM CA for 14 

days. Medium containing the drug was replaced every other day. (D) Representative 



 21 

microscopic images of melan-A-immunostained sections of the 3D skin model after treatment 

with RD and CA for 10 days. 
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Supplementary Figure legend 

Figure S1 Expression of NRF2 and NQO1 in B16BL6 cells after RD, CA or ES936 treatment. 

B16BL6 mouse melanoma cells were treated with a combination of RD (0.2 mM), CA (0.5 µM) 

or ES936 (100 µM) for 24 h, and the levels of NRF2 and NQO1 protein were examined by 

immunoblotting. Signal intenisites were normalized against the β-actin signal. Note that 0.2 mM 

RD resulting in 50 % growth inhibition induced a much weaker level of NRF2 or NQO than 0.5 

µM CA resulting in no significant growth inhibition. 

 


