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Abstract 

 

Background: Although surgery and chemotherapy has extended advanced gastric 

cancer patient survival, some patients still experience relapse and metastasis. We 

postulated that PI3K pathway proteins could be prognostic biomarkers for the advanced 

gastric cancer patients. 

Methods: A retrospective cohort of 160 advanced gastric cancer patients receiving 

potentially curative surgery with/without chemotherapy was investigated for PIK3CA 

mutation and PI3K pathway protein level in the context of overall survival (OS) and 

relapse-free survival (RFS).  

Results: Thirteen patients (13/111 11.7%) had PIK3CA mutations in codon 545 whereas 

one patient (1/94 1.1%) had a mutation in PIK3CA codon 1047. PI3K pathway protein 

immunohistochemistry demonstrated that phosphorylated AKT positive (p-AKT (+)) 

patients in the surgery-only group had a good prognosis in terms of OS and RFS. No 

significant association between PIK3CA mutations and PI3K pathway protein level was 

seen.  

Conclusions: This study revealed that: (i) PIK3CA hotspot mutations occurred with low 

frequency in gastric cancer; (ii) PIK3CA hotspot mutations were not directly associated 
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with PI3K pathway activation; and (iii) p-AKT (+) may be a biomarker for better 

outcomes for gastric cancer patients undergoing gastrectomy.  

 

Keywords: biomarker; gastric cancer; p-AKT; PIK3CA; PI3K pathway 
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1. Introduction 

Recent advancements in multidisciplinary treatments for gastric cancer have 

substantially prolonged the survival of gastric cancer patients. Surgery and peri- or 

post-operative therapy continue to be the mainstay treatments for these patients [1-3]. 

In Japan, gastrectomy with curative intent that includes D2 or more extensive lymph 

node dissection followed by S-1, an oral fluoropyrimidine (i.e., a precursor of 5-FU), 

monotherapy has been well-established as the standard therapy for Stage II/III 

advanced gastric cancer; however, approximately 30-40% of patients who underwent 

surgery and S-1 chemotherapy relapsed within 5 years of surgery [4]. Therefore, 

identification of gastric cancer biomarkers by gene expression and 

immunohistochemistry to predict treatment sensitivity has been of great interest [5, 6]. 

The phosphatidylinositol 3-kinase (PI3K) pathway that is partially represented by 

PI3K, AKT, mammalian target of rapamycin (mTOR), and tensin homologue deleted on 

chromosome ten (PTEN) proteins is essential for cell proliferation, differentiation, and 

metabolic control. PI3Ks are lipid kinases that phosphorylate PIP2 

(phosphatidylinositol 4, 5-bisphosphate) to generate PIP3 (phosphatidylinositol 3, 4, 

5-triphosphate), which in turn activates AKT and downstream effectors, including 

mTOR [7, 8]. The tumor suppressor PTEN negatively regulates this process by 

dephosphorylating PIP3 [9]. Meanwhile, the PI3K regulatory subunit p85α stabilizes 
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the kinase activity of the p110α catalytic subunit via a helical domain interaction [10, 

11]. The gene encoding the p110α catalytic subunit, PIK3CA, is frequently or infrequently 

mutated in a wide range of human cancers such as those from breast, colon and the stomach 

[12-15]. Most PIK3CA mutations occur in exon 9 and exon 20, which code for the helical 

and kinase domains, respectively [12]. Within these exons, recurrent (i.e., hotspot) 

mutations, including E545K and H1047R, have been reported for several tumor types 

[13-15], and these mutations may induce oncogenic effects [16, 17]. Although limited in 

KRAS wild type tumors, these hotspot mutations are associated with resistance to 

EGFR-blocking therapies [18] and a poor prognosis in colorectal cancer patients who 

underwent surgery with curative intent [19]. 

Here we investigated whether PIK3CA hotspot mutations and PI3K pathway 

protein level are associated with the prognosis of advanced gastric cancer patients who 

received curative gastrectomy with/without adjuvant S-1 chemotherapy. We aimed to 

clarify the association between prognosis and: (i) PIK3CA hotspot mutations; (ii) PI3K 

pathway-related protein levels; and (iii) PIK3CA hotspot mutations and phospho-PI3K 

(p-PI3K) levels.  

 

2. Methods 
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2.1. Patients  

This retrospective cohort included 160 patients with Stage ΙB/II/III gastric cancer 

(surgery only (Surgery) group, n = 115; and surgery + S-1 (S-1) group, n = 45) who 

underwent R0 resection at the Iwate Medical University Hospital before November 

2009. Stage ΙB was used to validate candidate biomarkers and protein analyses. All 

patients were categorized according to the Union for International Cancer Control 

(UICC) TNM Classification of Malignant Tumours (7th edition) [20]. The Iwate Medical 

University Ethics Committee approved this study (approval number H26-142, 

HGH26-22). 

 

2.2. Direct sequencing of PCR products  

Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor 

samples using a WaxFree™ DNA kit (TrimGen, Sparks, MD, USA) after malignant 

lesion microdissection. PCR amplification was performed for hotspot point mutations at 

PIK3CA codons 545 and 1047. MKN1 (E545K) and HCT116 (H1047R) were used as 

mutated (MT) controls, and GSS served as a wild type (WT) control. Cell line integrity 

was confirmed by short tandem repeat (STR) analysis [21]. PIK3CA is on chromosome 3, 
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but shares 98% homology with an approximately 7.0 kbp region on chromosome 22q11.2 

[22]. Since codon 545 is located in this highly homologous region, the codon 545 PCR 

primer was designed to avoid amplification of this pseudogene. Two nucleotides, located 

23 and 24 bp downstream from the 3′ end of codon 545, are unique to PIK3CA [22, 23]. 

As such, the codon 545 primer was specific for the 3′ end of the reverse primer to 

prevent annealing with the homologous sequence. PCR reactions contained 2 ☓ 

Emeraldamp® MAX PCR Master Mix (Takara Bio Inc., Otsu, Japan) (15 µl), primers 

(0.6 µl each), and template DNA (25 ng) in 30 µl. Amplification was carried out in a 

TaKaRa PCR Thermal Cycler Dice™ Version III TP600 (Takara Bio, Inc.) for 40 cycles 

of 10 seconds at 98 °C, 30 seconds at 60 °C, and 30 seconds at 72 °C. Primer sequences 

for codon 545 were 5'-GGGAAAATGACAAAGAACAGCTC-3' (sense) and  

5'-TCCATTTTAGCACTTACCTGTGAC-3' (antisense), and codon 1047 primers were  

5'-CTAGCCTTAGATAAAACTGAGCAAG-3' (sense) and 5'-AGAGTTATTAACAGTGCA 

GTGTGGA-3' (antisense). 

 

2.3. Allele-specific quantitative real-time PCR  

We performed allele-specific quantitative real-time PCR (qPCR) to validate the possible 

mutations found by direct sequencing [24]. qPCR reactions included 10 µl LightCycler® 
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480 Probe Master (Roche Applied Science, Penzberg, Germany), 1 µl of 10 ☓ primer and 

hydrolysis probe solutions, 30 ng template DNA and 3 µl sterile water (20 µl total 

volume) in a Light Cycler® Nano (Roche Diagnostics, Risch-Rotkreuz, Switzerland) with 

10 minutes at 95 °C, and 45 cycles of 10 seconds at 95 °C, 30 seconds at 60 °C, and 15 

seconds at 72 °C. Primer sequences were the same as for direct sequencing. Probe 

sequences for WT (E545E) were HEX-CTCTGAAATCACTGAGCA GG-BHQ and 

FAM-TCTCTGAAATCACTAAGCAGG-BHQ for MT (E545K). The H1047R primer/probe 

was purchased from Bio-Rad (Hercules, CA, USA). 

 

2.4. E545K digital PCR 

The same set of primers and probes was used for E545K qPCR. Reactions included 

template genomic DNA (3 µl of 10ng/µl), 10 µl QuantStudio™3D Digital PCR Master 

Mix (Thermo Fisher Scientific, Waltham, MA, USA), and 1 µl each of primer and probe. 

This mixture was applied to a ProFlex™System chip and analyzed with the following 

program: 10 minutes at 96 °C, 39 cycles of 2 minutes at 60 °C and 30 seconds at 98 °C, 

and finally 2 minutes at 60 °C. Absolute quantification was conducted using a 

QuantStudio™ 3D Digital PCR system and analyzed with QuantStudio™ 3D 

AnalysisSuite™ Cloud Software (Thermo Fisher Scientific) [25]. 
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2.5. Ultra deep sequencing for E545K  

To confirm mutations with low allele frequency, a sequencing library was made from 5 

samples with an insert size of the PCR product (111 bp) according to the protocol 

provided by Illumina (San Diego, CA, USA). The libraries were then sequenced using 

MiSeq2000 with approximately 111 bp paired-reads that represent the PCR product. 

Mapping and SNP/INDEL analysis was then performed to detect the PIK3CA codon 545 

mutation [26]. 

 

2.6. Immunohistochemistry  

Immunohistochemistry was performed on tissue microarrays made from tumor-rich 

areas taken from samples embedded in paraffin blocks [27]. Primary antibodies were 

incubated with the indicated dilution ratio: Phospho-PI3 Kinase p85 (Tyr458)/p55 

(Tyr199), 1:100; Phospho-AKT (Ser473), 1:75; Phospho-mTOR (Ser2448) (49F9), 1:75; 

and PTEN (138G6), 1:450 (Cell Signaling Technology, Inc., Tokyo, Japan). 

Phospho-PI3K and phosphor-AKT antibodies are polyclonal. After antigen retrieval 

(EDTA buffer pH 9 for 30 min at 95 °C), samples were incubated with primary antibody 

for 60 minutes at room temperature. Peroxidase-labeled anti-rabbit secondary antibody 
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(Histofine® Simple Stain MAX PO, Nichirei Biosciences, Inc., Tokyo, Japan) was then 

applied for 30 minutes at room temperature. Diaminobenzidine (DAB) was used for 

colorimetric detection. When anti p-AKT antibody was the primary antibody, samples 

after antigen retrieval were incubated overnight at 4 °C, followed by a 15 min 

incubation with peroxidase-labeled anti-rabbit secondary antibody at room temperature. 

Colorimetric detection was performed using the DAKO's catalyzed signal amplification 

(CSA) II Biotin-free Tyramide Signal Amplification System (Agilent Technologies, Santa 

Clara, CA, USA). Samples were deemed to have positive staining when more than 5% of 

cancer cells were stained. Three investigators independently scored the staining. 

 

2.7. Statistical analysis  

The distributions of overall survival (OS) and relapse-free survival (RFS) time were 

estimated using the Kaplan-Meier method. A log-rank test and Cox proportional 

hazards model was used to compare survival distributions and hazards ratio, 

respectively, of the two subgroups based on therapeutic or diagnostic parameters. 

Interaction P values were calculated with the Likelihood ratio test. Statistical analysis 

was done with JMP, version 11 (SAS Institute Japan, Tokyo, Japan). 
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3. Results 

 

3.1. Patient population 

Study patient characteristics are listed in Table 1. Patients with stage II/III disease (n = 

125) were primarily used for survival analysis. The 5-year overall survival (OS) rate for 

the S-1 and Surgery groups was 75.0% and 66.2%, respectively (Log-rank test, P = 0.26; 

HR (Hazards Ratio), 1.47; 95%CI (Confidence Interval), 0.76 to 2.99). The 5-year 

relapse-free survival (RFS) rate was 68.4% for the S-1 group and 62.5% for the Surgery 

group (Log-rank test, P = 0.23; HR, 1.48; 95%CI, 0.79 to 2.93) (Fig. 1). We considered 

these results were comparable to those from the ACTS-GC trial [4]. Stage ΙB patients 

were also analyzed to further validate candidate biomarkers. 

 

3.2. PIK3CA hotspot mutations  

PIK3CA PCR products were obtained from 111 and 94 samples for codon 545 and codon 

1047, respectively. With Sanger sequencing, suspected but consistent sequence 

histograms for codon 545 were obtained for 22 of 111 samples; this result may be due to 

the low allele frequency of this mutation [28, 29] (Fig. S1). Of those samples with good 

DNA quality, three were validated by ultra-deep sequencing whose total coverage was 
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1,418,873 to 1,494,814 bp per amplicon with a mutant allele coverage of 22,613 to 

71,026 bp (Table S1). All three samples had the same mutations in codon 545. Because 

genomic DNA from one sample ran short, the remaining 18 samples were validated for 

the E545K mutation by digital PCR (dPCR). The dPCR was successful for 16 of 18 

samples (88.9%) and we detected the E545K mutation in 10 (62.5%) of these samples 

(Table S2). Therefore, 13/19 (68.4%) of informative cases with suspected mutation by 

Sanger sequencing were confirmed by independent methods. Meanwhile, one mutation 

in codon 1047 was detected by Sanger sequencing and allele-specific qPCR with an 

estimated allele frequency of 5-10%. Overall, 13 patients (11.7%, 13/111) had E545K 

mutations, and one patient (1.1%, 1/94) had an H1047R mutation.  

 

3.3 PI3K pathway protein levels and prognosis  

Samples used for immunohistochemistry were selected to have sufficient quality for 

tissue microarray sections from Stage II/III gastric cancer patients who underwent a 

gastrectomy with curative intent (Fig. 2). Several PI3K pathway proteins, including 

p-PI3K (p85(Tyr458)/p55(Tyr199)), p-AKT (Ser473), p-mTOR, and PTEN, were 

examined as potential prognostic markers.  

In the S-1 group, the 5-year OS of p-AKT (+) was 74.0% and p-AKT (-) was 69.2% 
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(Log-rank test, P = 0.85), whereas the 5-year RFS of p-AKT (+) was 61.2% and p-AKT (-) 

was 69.2% (Log-rank test, P = 0.80) (Fig. 3A, B). In the Surgery group, the 5-year OS of 

p-AKT (+) (77.4%) was higher than that of p-AKT (-) (51.4%) (Log-rank test, P = 0.03; 

HR, 2.19; 95%CI 1.06 to 4.77), as was the RFS (p-AKT (+), 75.0%, and p-AKT (-), 54.1%; 

Log-rank test, P = 0.01; HR, 2.45; 95%CI 1.20 to 5.28) (Fig. 3C, D).   

In the S-1 group, both the 5-year OS and RFS of PTEN (+) were higher than that for 

PTEN (-) (OS: 76.3% vs. 66.7%; Log-rank test, P = 0.54; HR, 1.42; 95%CI 0.42-4.47; and 

RFS: 67.3% vs. 60.0%; Log-rank test, P = 0.30; HR, 1.76; 95%CI 0.57-5.31) (Fig. 3E, F). 

Similar differences in the the 5-year OS and RFS of PTEN (+) and PTEN (-) were also 

seen for the Surgery group (OS: 71.7% vs. 60.5%; Log-rank test, P = 0.16; HR, 1.68; 

95%CI 0.81-3.58; and RFS: 71.7% and 55.3%; Log-rank test, P = 0.07; HR, 1.90; 95%CI 

0.94 -4.00) (Fig. 3G, H). Both the 5-year OS and RFS of PTEN (+) patients showed 

similar survival curves up to 2 years post-operation, and separated thereafter. Although 

statistical differences have not been confirmed, PTEN status may be associated with a 

latent effect on patient survival.  

Levels of other PI3K pathway proteins, including p-mTOR and p-PI3K, showed no 

differences between the treatment groups (Fig. S2, S3). Patients with stage ΙB disease 

without adjuvant chemotherapy also had no difference in prognosis in terms of PI3K 
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pathway protein levels.  

 

3.4. PIK3CA mutations and PI3K phosphorylation  

Samples of all stages were compared. The low observed mutant allele frequency could 

indicate tumor heterogeneity [30] and thus may not be directly associated with the 

pathological scoring of p-PI3K. Among our 13 samples with the codon 545 mutation, 

only one was p-PI3K positive. The only sample with the codon 1047 mutation was 

p-PI3K negative. Hence, PIK3CA hotspot mutations likely do not give rise to PI3K 

phosphorylation in most tumor cells in these gastric cancer cases. 

 

3.5. Subgroup analysis  

OS and RFS in eligible patients were analyzed according to age, sex, histologic type, 

disease stage, PI3K signaling protein level, and PIK3CA genotype. In all parameter 

groups, both p-AKT (+) and PTEN (+) were a better prognostic factor for survival. There 

was no interaction between protein levels and any of these factors (Fig. 4, Fig. 5). 

 

4. Discussion 
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Detection of mutations with low allele frequency is a challenging task in sequencing 

human tumor genomes. For PIK3CA hotspots, low allele frequency mutation (less than 

10%) in human tumors was previously reported [29, 30]. In terms of anti-cancer 

drug-resistance acquisition, PIK3CA mutations with low allele frequency may be 

associated with minor subclones [31-33]. Following principles of Darwinian evolution, 

advantageous phenotypes are selected, and disadvantageous phenotypes are eliminated 

to promote tumor survival [34]. Cells with PIK3CA hotspot mutations could be present 

as minor clones before antitumor drugs are given, and then become the majority under 

selection pressure brought by antitumor drugs [35]. As such, these minor clones can 

play a critical role in resistance to antitumor drugs and acquisition of metastatic 

potential [36, 37]. We identified PIK3CA mutations in surgical specimens with an allele 

frequency of 1.6 to 4.8%. Although PIK3CA mutations did not appear to have a strong 

effect on prognosis, the significance of minor clones in the context of cancer recurrence 

in adjuvant chemotherapy should nonetheless be carefully investigated. 

We found that p-AKT (+) had diagnostic power for favorable prognosis in the Surgery 

group but not the S-1 group. The malignant features of p-AKT (-) tumors may be 

indicated by the favorable outcome of p-AKT (+) tumors from a wide range of origins, 

including gastric cancer [38-40]. Our results suggest that p-AKT (-) tumors are more 
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malignant than p-AKT (+) but are rescued by the adjuvant chemotherapy. We also 

identified PTEN as another prognostic marker for gastric cancer. In the Surgery group, 

OS/RFS of PTEN (-) was similar to PTEN (+) during the first two post-operative years, 

but thereafter the OS/RFS of PTEN (-) was lower than PTEN (+). Indeed, our results are 

consistent with several reports showing that PTEN loss is associated with poor 

prognosis in pancreatic, prostate, ovarian, and gastric cancers [41-46]. Importantly, our 

results indicated that the OS/RFS of PTEN (-) might be associated with the relative 

resistance of S-1 that results in a consistently lower survival rate. The PTEN-dependent 

mechanism affected by S-1 chemotherapy is unclear, but the distinct pattern of PI3K 

pathway protein expression in gastric cancer suggests that PI3K inhibitors could be 

useful for treating 5-FU-resistant gastric cancer. 

PIK3CA oncogenic mutation is thought to be a major cause of PI3K activation [47]. 

However, in contrast to in vitro studies, in clinical samples PIK3CA mutations appear 

to make only limited contributions to PI3K activation [48-50]. Of the 14 PIK3CA 

hotspot mutations we identified, only one (7.1%) case was p-PI3K (+) while most (22/23 

95.7%) p-PI3K (+) cases had no PIK3CA mutations. Although the E545K and H1047R 

amino acid substitutions may affect the p110α structure to influence phosphoryl group 

binding [51], our observations indicate that the PIK3CA mutations may not be 
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sufficient indicators of PI3K pathway activation. Therefore, in practice, a 

comprehensive examination of PI3K pathway activation at a post-translational level 

would be needed when using PI3K pathway inhibitors. The clinical significance of 

PIK3CA mutations in PI3K pathway activation would require further investigation. 

 

5. Conclusions 

The low allele frequency of PIK3CA mutations may have a limited effect in Stage II/III 

gastric cancer. The present results show that the clinical significance of the PI3K 

pathway in gastric cancer is represented by both p-AKT and PTEN. Further studies will 

provide insight into the potential utility of PI3K pathway molecules in differential 

diagnoses and molecular targeting therapies as part of multi-disciplinary gastric cancer 

treatments.   
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Figure Legends 

Fig. 1. Kaplan-Meier estimates. (A) OS and (B) RFS for gastric cancer patients with 

stage II/III disease. S-1, surgery + S-1 group; Surgery, surgery-only group; P, P value of 

Log-rank test; HR, hazards ratio; CI, confidence interval. Vertical dashed line indicates 

5 years. 

 

Fig. 2. Immunohistochemistry of PI3K pathway-related proteins. 



Ito，et al.  

24 

(A) p-PI3K (-), negative; (B) p-AKT (-), negative; (C) p-mTOR (-), negative; (D) PTEN (-), 

negative; (E) p-PI3K (+), positive; (F) p-AKT (+), positive; (G) p-mTOR (+), positive; and 

(H) PTEN (+), positive. Scale bar, 100 µm. 

 

Fig. 3. Kaplan-Meier survival curves stratified by p-AKT and PTEN levels. 

(A) OS and (B) RFS of p-AKT (+) (n = 28) and p-AKT (-) (n = 13) in the S-1 group. (C) OS 

and (D) RFS of p-AKT (+) (n = 40) and p-AKT (-) (n = 37) in the Surgery group. (E) OS 

and (F) RFS of PTEN (+) (n = 26) and PTEN (-) (n = 15) in the S-1 group. (G) OS and (H) 

RFS of PTEN (+) (n = 39) and PTEN (-) (n = 38) in the Surgery group. S-1, surgery + S-1 

group; Surgery, surgery-only group; P, P value of Log-rank test; HR, hazards ratio; CI, 

confidence interval. Vertical dashed line indicates 5 years. 

 

Fig. 4. Subgroup analysis based on hazards ratios for OS/RFS and P values for the 

interaction between p-AKT level and baseline characteristics. HR, hazards ratio; CI, 

confidence interval; IHC, immunohistochemistry. 

 

Fig. 5. Subgroup analysis based on hazards ratios for OS/RFS and P values for the 

interaction between PTEN level and baseline characteristics. HR, hazards ratio; CI, 
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confidence interval; IHC, immunohistochemistry. 



Ito，et al.  

26 

 

Table 1. Patient characteristics 

 

Characteristics N (%) 

All patients 160 

Age (years), median 68.6 

Gender  

Male 113 (70.6) 

Female 47 (29.4) 

Histologic type  

Differentiated 79 (49.4) 

Undifferentiated 81 (50.6) 

Stage (TMN7)  

ΙB 35 (21.9) 

IIA 38 (23.8) 

IIB 37 (23.1) 

IIIA 18 (11.2) 

IIIB 19 (11.9) 

IIIC 13 (8.1) 

Type of lymph node dissection  

D1 43 (27) 

D2 112 (70) 

D3 5 (3) 

Modality  

Surgery (surgery only) 115 (71.9) 

S-1 (surgery + S-1) 45 (28.1) 

Lesions of relapse  

NA 123 (76.9) 

Lymph nodes 7 (4.4) 

Hematogenous 15 (9.4) 

Peritoneum 13 (8.1) 

Local 2 (1.2) 
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Table S1. Next generation sequencing of codon 545  
 
 Reference 

Position 
Type Reference Allele Variant 

Count 
Coverage Frequency 

(%) 
MKN1* 1633 SNV G A 1,257,031 1,925,310 65.30 

HA20** 1633 SNV G A 22,613 1,482,130 1.53 

HD7** 1633 SNV G A 38,275 1,418,873 2.70 

HE2** 1633 SNV G A 71,026 1,494,814 4.75 

*Cell line for positive control; **Patient tumor samples 



Table S2. Validation of E545K status  
 
 

Assay 

 
 

Sample 
ID 

 
 

Copies/µl 
(WT) 

 
 

Copies/µl 
(MT) 

 
 

Allele       
frequency (%) 

E545K HA1 17.29 0.15 0.88 
E545K HA6 3.04 0 0 
E545K HA7 49.00 0 0 
E545K HA8 13.11 1.37 9.49 
E545K HB7 NA NA NA 
E545K HB8 6.97 0.16 2.17 
E545K HC3 56.97 0.08 0.14 
E545K HC4 65.62 0.56 0.84 
E545K HD3 5.70 0 0 
E545K HD8 87.55 0.32 0.37 
E545K HE1 81.81 0.23 0.28 
E545K HE3 45.32 0.23 0.51 
E545K HE5 47.19 1.57 3.22 
E545K HF2 NA NA NA 
E545K HA12 4.91 0.08 1.61 
E545K HA18 1.30 0 0 
E545K HA25 5.27 0 0 
E545K HB28 14.88 0 0 

WT, wild type; MT, mutant type; NA, not applicable. 



 

Fig. S1. Direct sequencing histogram of codon 545.  

(A) The sense strand of the WT control (GSS) and (B) MT control (MKN1). 

(C) A gastric cancer patient sample considered to be WT. (D) Two gastric cancer patient 

samples suspected to have the MT allele. The arrows indicate c.1633 G>A substitution 

at codon 545. 

 



 

 

Fig. S2. Kaplan-Meier survival curves stratified by p-PI3K level. 

(A) OS and (B) RFS of p-PI3K (+) (n = 5) and p-PI3K (-) (n = 36) in the S-1 group. (C) OS 

and (D) RFS of p-PI3K (+) (n = 10) and p-PI3K (-) (n = 67) in the Surgery group.  

Dashed vertical line indicates 5 years. P, P value of Log-rank test; HR, hazards ratio; 

and CI, 95% confidence interval. 

 



 
 

Fig. S3. Kaplan-Meier survival curves stratified by p-mTOR level. 

(A) OS and (B) RFS of p-mTOR (+) (n = 27) and p-mTOR (-) (n = 14) in the S-1 group. (C) 

OS and (D) RFS of p-mTOR (+) (n = 55) and p-mTOR (-) (n = 22) in the Surgery group. 

Dashed vertical line indicates 5 years. P, P value of Log-rank test; HR, hazards ratio; 

and CI, 95% confidence interval. 
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