Relationship between brain temperature and white matter damage in subacute carbon monoxide poisoned patients

Shunrou Fujiwara¹, Ph.D., Yoshichika Yoshioka², Ph.D., Tsuyoshi Matsuda³, Ph.D.

Hideaki Nishimoto¹, M.D., Ph.D., Toshiyuki Murakami¹, M.D., Ph.D., Takamasa Nanba¹, M.D., Ph.D.,

Akira Ogawa¹, M.D., Ph.D. Kuniaki Ogasawara¹, M.D., Ph.D., Takaaki Beppu^{1, 5}, M.D., Ph.D.

¹Department of Neurosurgery, ⁵Department of Hyperbaric Medicine, Iwate Medical University, 19-1

Uchimaru, Morioka, Iwate 020-8505, Japan

²Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka University, 3-1

Yamadaoka, Suita, Osaka 565-0871, Japan

³MR Applications and Workflow Asia Pacific, GE Healthcare Japan, 4-7-127 Asahigaoka, Hino, Tokyo 191-

8503, Japan

Introduction: Carbon monoxide (CO) poisoned patients have shown the imbalance between the cerebral

perfusion and metabolism after CO exposure and brain temperatures in these patients may change abnormally

as a result of the imbalance. In these patients, it has been reported that cerebral white matter (WM) was

damaged in the early phase, BT may thus depend on the extent of damage in which brain metabolism should

be reduced. Here, we investigated whether BT correlates with WM damage in the subacute CO-poisoned

patients.

Methods: In thirteen CO-poisoned patients, proton magnetic resonance spectroscopy and diffusion tensor

imaging (DTI) were performed on 3 Tesla magnetic resonance imaging system in the subacute phase after CO

exposure. BT was estimated from the chemical shift difference from water (H₂O) to N-acetylaspartate (NAA)

signals with the following formula: $T [^{\circ}C] = 286.9-94 \times \Delta(H_2O-NAA)$. WM damage was assessed by fractional

anisotropy (FA) value, which is calculated from DTI dataset. Correlation was examined by Pearson correlation

coefficient with p<0.05. We defined mean ± 1.96 standard deviations of BT and FA value from the age-

matched controls as the normal cut-off values (p<0.05).

Results: Significant correlation was observed between BT and FA (rho=0.6181, p=0.0244). One of 13 patients

showed delayed neuropsychiatric sequelae on Day 27 after CO exposure. DNS patient showed normal BT and

significant low FA value, whereas the other 12 patients showed significant high BT and normal FA value (Fig.

1).

Conclusion: BT might associate with degree of WM damage in the subacute CO-poisoned patient.