1	Rapid species identification and epidemiological analysis of carbapenem-resistant
2	Acinetobacter spp. by a PCR-based open reading frame typing method
3	
4	Running title: Rapid epidemiological analysis for Acinetobacter
5	Contents Category: Clinical microbiology and virology
6	
7	Yuki Yamada ¹ , Kentaro Endo ¹ , Kaori Sawase ¹ , Marie Anetai ¹ , Kazuya Narita ¹ , Yuji Hatakeyama ¹ ,
8	Katsunori Ishifuji ¹ , Makiko Kurota ¹ , and Akira Suwabe ²
9	1) Division of Central Clinical Laboratory, Iwate Medical University Hospital, Morioka, Japan
10	2) Department of Laboratory Medicine, Iwate Medical University School of Medicine, Morioka,
11	Japan
12	
13	Correspondence author
14	Yuki Yamada
15	Division of Central Clinical Laboratory, Iwate Medical University Hospital, Morioka, Japan
16	19-1 Uchimaru, Morioka 020-8505, Japan
17	Tel.: 81-19-651-5111, Fax: 81-19-624-5030
18	E-mail: yuyamada@iwate-med.ac.jp

19 Summary

20	The spread of carbapenem-resistant Acinetobacter spp. has become a global problem. In this study,
21	18 carbapenem-resistant Acinetobacter calcoaceticus-baumannii (ACB) complexes, identified using
22	a conventional biochemical method at our hospital during 2004 – 2013, were studied for species
23	identification and epidemiological analyses. Species identification was performed using
24	matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF MS), a
25	partial sequence analysis of <i>rpoB</i> and a PCR-based open reading frame typing (POT) method. The
26	POT method can not only identify the species of ACB complexes but can also simultaneously
27	determine the international epidemic clones and their genetic identities of A. baumannii in several
28	hours. Carbapenem resistance gene detection by PCR, molecular epidemiological analysis by
29	pulsed-field gel electrophoresis (PFGE), and Pasteur Institute multi-locus sequence typing (MLST)
30	analysis were performed. All three methods identified 18 isolates as A. baumannii (n=10), A. pittii
31	(<i>n</i> =4), and <i>A. nosocomialis</i> (<i>n</i> =4). A metallo β -lactamase gene in all strains of <i>A. pittii</i> and <i>A.</i>
32	nosocomialis and an ISAba1 gene in the upstream of the $bla_{OXA-51-like}$ gene in eight strains of A.
33	baumannii were detected respectively as carbapenemase-related genes. Results from PFGE
34	demonstrated that nine strains of A. baumannii were closely related genetically. Results of MLST
35	analysis showed that A. baumannii are classifiable to a sequence type 2. These results were
36	consistent with those obtained using POT method. This POT method can easily and rapidly identify

- 37 the international epidemic clones and the identities of *A. baumannii*. It can be a useful tool for
- 38 infection control.
- 39
- 40 Key words: carbapenem-resistant Acinetobacter spp., matrix-assisted laser desorption ionization –
- 41 time of flight mass spectrometry, PCR-based open reading frame typing
- 42

43 Introduction

44	Acinetobacter spp. are important pathogens causing ventilator-associated pneumonias, bloodstream
45	infections, and wound infections in patients with critical illness. Recently, hospital-acquired
46	infection caused by multidrug-resistant A. baumannii showing resistance to antibiotic agents such as
47	carbapenems, fluoroquinolones, and aminoglycosides has become a global problem (Peleg et al.,
48	2008; Perez et al., 2007). Particularly the epidemic-type lineages of A. baumannii international
49	clones I and II reportedly show multidrug resistance and cause hospital outbreaks (Diancourt et al.,
50	2010). Therefore, it is apparently important to identify the types of the epidemiologic clones of A .
51	baumannii in hospital-acquired infection control. The prevalence of carbapenem-resistant
52	Acinetobacter spp. among Acinetobacter spp. has been reported as lower in Japan (3.6%) (Japan
53	Nosocomial Infections Surveillance, http://www.nih-janis.jp/report/kensa.html), but increasing
54	worldwide, by 34.4% in the USA (Master et al., 2013), 90.8% in China (Xu et al., 2013), 58.7% in
55	Taiwan (Kou et al., 2012), and 41.4% in Korea (Park et al., 2012).
56	The mechanisms of carbapenem resistance of A. baumannii have been explained by production of
57	plasmid-encoded carbapenemases such as OXA-carbapenemases and metallo β -lactamases and also
58	by increased production of chromosome-encoded carbapenemases as a result of insertion of ISAba1
59	into the upstream region of a $bla_{OXA-51-like}$ gene, thereby providing a strong promoter. Aside from
60	carbapenemases, acquired mechanisms such as decreased expression of outer membrane proteins

62	penicillin-binding proteins have been reported (Dijkshoorn et al., 2007). The loss of a 29-kDa OMP
63	known as CarO is also reportedly associated with carbapenem resistance (Peleg et al., 2008). An
64	AdeABC gene, which was chromosomally encoded as a resistance-nodulation-division family type
65	efflux pump, was also reportedly involved in multidrug resistance (Vila et al., 2007).
66	Genotyping methods, such as multi-locus sequence typing (MLST), in order to identify international
67	epidemic clones of the A. baumannii are not performed easily in common clinical laboratories.
68	However, the PCR-based open-reading-frame (ORF) typing (POT) method is a molecular typing
69	method using multiplex PCR without performing nucleotide sequencing analyses of multiple genes
70	as with MLST. The Cica Geneus TM Acineto POT KIT (Kanto Chemical Co. Inc., Tokyo, Japan) can
71	identify the species of Acinetobacter calcoaceticus-baumannii (ACB) complex. Moreover, it can
72	determine the international epidemic clones and the genetic identities of the species identified as A.
73	baumannii. This method is applicable to common clinical laboratories because all the results can be
74	obtained easily and rapidly (Suzuki et al., 2014). In the present study, we investigated the strains,
75	antimicrobial susceptibilities, and molecular biological characteristics of a carbapenem-resistant
76	ACB complex, which is identified in a conventional biochemical method. Then we compared them
77	with the results obtained using a Cica Geneus TM Acineto POT KIT.

61 (OMPs), overexpression of multidrug efflux pumps, and alteration in the affinity of

79 Methods

80 Bacterial isolates

- 81 This study examined 18 isolates of a carbapenem-resistant ACB complex from the clinical isolates in
- 82 the period during 2004–2013. Biochemical identification of the isolates was accomplished using
- 83 a panel (Neg Com 6.12J; Beckman Coulter Inc., CA, USA) and a MicroScan WalkAway-96 SI
- 84 system (Beckman Coulter Inc.). Species identification was confirmed from a partial sequence
- analysis of *rpoB* gene (La Scola *et al.*, 2006). Species identification was confirmed using
- 86 matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS).
- 87 The sample was applied directly on a target plate of the stainless steel. Then
- 88 α-cyano-4-hydroxycinnamic acid matrix solution was added. After drying, it was measured using
- software with a library (MALDI Biotyper 3.1 ver.4.0.0.1 with 5,627 entries; Bruker Daltonics GmbH,
- 90 Bremen, Germany). The reliability score value recommended by a manufacturer was used for
- 91 species identification with scores of >2.000.
- 92

93 Antimicrobial susceptibility testing

- 94 The minimum inhibitory concentrations (MICs) were determined using a microdilution broth
- 95 method based on the recommendation by the Clinical and Laboratory Standards Institute (CLSI).
- 96 Commercially available dry plates for antibiotic susceptibility tests were purchased from Eiken

97	Chemical Co. Ltd. (Tokyo, Japan). Susceptibilities to the antibiotics were based on the CLSI criteria
98	(CLSI M100-S22). Antimicrobial agents tested in this study were the following: imipenem (IPM),
99	meropenem (MEPM), sulbactam/ampicillin (SBT/ABPC), amikacin (AMK), and ciprofloxacin
100	(CPFX).
101	
102	DNA amplification analysis
103	The carbapenem resistance genes and their associated upstream Insertion sequence (IS) elements,
104	including <i>bla</i> _{IMP-1} , <i>bla</i> _{IPM-2} , <i>bla</i> _{VIM-2} , <i>bla</i> _{OXA-51-like} , <i>bla</i> _{OXA-23-like} , <i>bla</i> _{OXA-24-like} and <i>bla</i> _{OXA-58-like} ,
105	ISAba1 and ISAba3-like, were detected under the same PCR conditions with the same primers
106	described previously (Poire et al., 2006, Shibata et al., 2003, Turton et al., 2006). The insertion of
107	ISAba1 into the carO gene was confirmed as previously described (Lee et al., 2011; Lu et al., 2009).
108	
109	PCR-based ORF Typing (POT) method
110	The POT method was performed using a commercially available Cica Geneus TM Acineto POT KIT
111	(Kanto Chemical Co. Inc.) according to the manufacturer's instructions. The several ORFs specific
112	to the certain strains of Acinetobacter spp. were detected using multiplex PCR. The distribution
113	patterns of the ORFs were calculated from three categories of the POT codes. The first category of
114	the POT code indicates the species identification such as < 1000 for <i>A</i> . <i>baumannii</i> , 1000–1999 for <i>A</i> .
115	pittii, 2000–2999 for A. nosocomialis, 3000–3999 for Acinetobacter species close to A. nosocomialis,

and 4000 and more for the other <i>Acinetobacter</i> spp. Furthermore, the first category of the PC)T co	de
---	-------	----

- 117 denotes the types of international clones, for example, No. 69 for international clone I, No. 122 for
- international clone II. If the identified species are A. baumannii and also if they are obtained from an
- 119 outbreak, all three categories of POT code will be the same (Suzuki *et al.*, 2014).

120

121 Pulsed-field gel electrophoresis (PFGE) analysis

- 122 Chromosomal DNAs were digested with ApaI restriction enzyme (Takara Bio Inc., Tokyo, Japan).
- 123 DNA fragments were electrophoresed in 1% agarose gel in a 0.5 × Tris-borate-EDTA buffer
- 124 with GenePath® systems (Bio-Rad Laboratories Inc., CA, USA) at 14 °C and 6 V/cm for 18.5 hr
- 125 with the initial and final pulse times of 1.0–17.0 s. The banding pattern was interpreted according
- 126 to the methods described by Tenover *et al.* (1995).

127

128 Multi-locus sequence typing (MLST) analysis

- 129 MLST analysis was performed according to the protocol of the Institute Pasteur's MLST schemes
- 130 (http://www.pasteur.fr /recherche/genopole/PF8/mlst/Abaumannii.html). Among the isolates
- showing the different PFGE pattern, Nos. 9, 10, and 15 were chosen as representatives for MLST

132 analysis.

134 Result

135 Species identification

- 136 Eighteen isolates of ACB complex were identified as *A. baumannii* (*n*=10), *A. pittii* (*n*=4), and *A.*
- 137 nosocomialis (n=4). All three methods (MALDI-TOF MS, POT method, rpoB analysis) yielded the
- same results. MALDI-TOF MS yielded score values of > 2.000 for all isolates (data not shown).

139

140 **DNA amplification analysis**

141 Three strains of A. pittii and four strains of A. nosocomialis were positive for a bla_{IMP-1} gene. These

- seven isolates were positive for a *bla*_{OXA-58-like} gene and also for an ISA*ba3*-like gene in its upstream
- 143 region. One isolate of A. pittii was positive for a bla_{VIP-2} gene. Ten isolates of A. baumannii were
- 144 positive only for a *bla*_{OXA-51-like} gene. Eight of those strains were positive for an ISAba1 gene in their
- 145 upstream region. The carO gene encoding OMPs was positive in all A. baumannii. However, a PCR
- amplicon for the carO gene that had approximate size of 1,700 bp, which was larger than the
- 147 expected size of 750 bp, was obtained from four isolates (Nos. 10, 12, 14, 16) (Table 1).
- 148

149 Antimicrobial susceptibility testing

- 150 All isolates were resistant to MEPM. Eight isolates of A. pittii and A. nosocomialis were resistant to
- 151 IPM, but eight isolates of A. baumannii showed MIC range at 4–8 µg/mL. Six isolates of A. pittii

152	and A. nosocomialis were susceptible to SBT/ABPC. Ten isolates of A. baumannii were
153	multidrug-resistant strains exhibiting resistance to carbapenems, aminoglycosides, and
154	fluoroquinolones (Table 1).
155	
156	Molecular epidemiology analysis
157	A. baumannii were classified into three types (types A, B1, B2) by two major types (A and B) and
158	two subtypes (B1 and B2) using PFGE analysis. Nine isolates of A. baumannii (Nos. 10–18) were
159	demonstrated to be close mutually related clones based on the Tenover criteria. The POT method
160	classified A. baumannii in three types. This result agreed with those of PFGE analysis. The MLST
161	analysis for each representative isolate (Nos. 9, 10, 15) from three different types (types A, B1, B2)
162	demonstrated that all these isolates belonged to sequence type 2 (ST 2). The POT codes 1 of ten
163	isolates of A. baumannii were all No. 122 (Table 2, Fig. 1).
164	
165	Discussion
166	In this study, carbapenem-resistant ACB complexes were identified to A. baumannii, A. pittii, and A.
167	nosocomialis. The identification results obtained using three methods (MALDI-TOF MS, POT
168	method, and <i>rpoB</i> analysis) were in agreement with each other. Furthermore, A. baumannii and non-
169	A. baumannii were different in the carrying resistance genes and also in the antimicrobial resistance

170	profiles. In most hospital laboratories, the Acinetobacter spp. identified using conventional
171	biochemical methods are reported as ACB complex. Precise identification such as A. baumannii, A.
172	calcoaceticus, A. pittii, and A. nosocomialis is difficult to perform. However, this identification of
173	ACB complex is required because the Acinetobacter spp. display different antimicrobial resistance
174	profiles depending on their species. Therefore, molecular biological methods such as <i>rpoB</i> sequence
175	analysis are necessary for accurate identification. The consistent ratios of species identification
176	between an MALDI-TOF MS and an <i>rpoB</i> analysis were reported by Kishii <i>et al.</i> (2014) with 72.4%
177	(89/123 strains) and by Hsueh PR et al. (2014) with 86.0% (246/286 strains). In this study, 18
178	isolates identified using MALDI-TOF MS were completely consistent with those identified using
179	rpoB analysis, although the samples were quite few. Nevertheless, it is noteworthy that the
180	MALDI-TOFMS is able to identify the species rapidly and precisely. Moreover, the results provide
181	useful data for choosing antimicrobial therapies and infection control policies.
182	No plasmid-related OXA β-lactamase was detected in 10 isolates of <i>A. baumannii</i> . In addition,
183	ISAba1 in the upstream of the OXA-51-like gene was identified in eight strains of A. baumannii, but
184	not in two isolates (Nos. 11, 12). We previously reported that resistance to carbapenem in No. 11
185	strain resulted from increased expressions of a bla_{ADC} gene and an efflux pump system (<i>adeB</i>) gene
186	(Yamada et al., 2013) and also reported that resistance to carbapenem in No. 12 was caused by a loss
187	of <i>carO</i> OMPs. However, metallo-β-lactamases genes were negative in 10 isolates of <i>A. baumannii</i>

188	and were positive in eight strains of non-A. baumannii. These results agreed with the report showing
189	that metallo-β-lactamase producing A. baumannii was rare (Zarrilli et al., 2013) and also with the
190	report that A. baumannii and non-A. baumannii differed in the carrying resistance genes (Kouyama
191	et al., 2012; Matsui et al., 2014). These reports and our results underscore the extreme importance of
192	clarifying resistance mechanisms when planning therapeutic strategies and infection control.
193	Antimicrobial susceptibility test results showed that isolates of A. baumannii were
194	multidrug-resistant (resistance to carbapenems, fluoroquinolones, and aminoglycosides), and these
195	strains showed lower MIC levels to IPM (4-8 µg/mL). Eight strains of non-A. baumannii showed
196	higher MIC levels to IPM and MEPM, probably caused by MBLs, which had a 100-1000-fold
197	higher carbapenem-hydrolyzing activity than OXA type carbapenemases (Zarrilli et al., 2013),
198	although they showed lower MIC levels to SBT/ABPC and CPFX. These results were apparently
199	consistent with those reported by Lee et al. (2007).
200	The PFGE analysis classified A. baumannii into three types by two major types (types A and B) and
201	two subtypes (types B1 and B2). Nine strains of A. baumannii (Nos. 10–18) belonging to subtype B1
202	and B2 were interpreted as "closely related clones" based on criteria presented by Tenover et al.
203	(1995). On the other hand, these strains were also classified into two types (122-26-55 and
204	122-26-53) using POT method. Based on the manufacturer's instructions, the different POT codes
205	are interpreted as different clones. However, it was suggested that they might be related clones in

206	consideration of the result of PFGE analysis and clinical course: they were obtained from the same
207	outbreak. Pasteur's MLST analysis classified three representative strains (Nos. 9, 10, 15) of A.
208	baumannii as ST2, belonging to an international clone II. A POT method using all ten strains of A.
209	baumannii also demonstrated the result suggesting an international clone II. Because rapid detection
210	of the appearance and international clones of A. baumannii of their kind are important in hospital
211	infection controls, an easier POT method was substituted for a more complicated MLST method.
212	Although we demonstrated the usefulness of POT analysis in epidemiological analysis of
213	carbapenem-resistant Acinetobacter spp., the several limitations need to be considered in interpreting
214	our results. First, the number of the samples was quite small (n=18), because we studied the samples
215	from a single institution. These are indeed limitations of this study. Secondly, only three types of the
216	ACB complex isolates were subjected and the other types of Acinetobacter spp. were not
217	investigated. Thirdly, all A. baumannii strains belonged to the same MLST type ST2. Since it is
218	difficult to increase the number and the kinds of the samples in a single institution, a multicenter
219	study is expected to be necessary to evaluate the usefulness of the POT method.
220	In conclusion, the species of Acinetobacter spp. determined as ACB complex in most clinical
221	laboratories are identifiable precisely using mass spectrometry, <i>rpoB</i> analysis, and POT analysis.
222	Results obtained from POT analysis were presented to demonstrate that it can identify an
223	international epidemic clone of A. baumannii and their identities easily and rapidly. This method is

224 regarded as a useful tool for infection control measures.

- 226 Acknowledgments
- 227 We are grateful to Dr. M. Suzuki, Laboratory of Bacteriology, Aichi Prefectural Institute of Public
- 228 Health, Nagoya, Japan, for helpful advice. This study was supported by JSPS KAKENHI Grant
- 229 Number H1600621.
- 230

231 **References**

232	1.	Clinical and Laboratory Standards Institute (2012). Performance standards for antimicrobial
233		susceptibility testing; twenty-third informational supplement. M100-S22. Wayne, PA, USA.
234		Clinical and Laboratory Standards Institute.
235	2.	Diancourt, L., Passet, V., Nemec, A., Dijkshoorn, L. & Brisse, S. (2010). The population
236		structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral
237		susceptible genetic pool. PLoS One 5, e10034.
238	3.	Dijkshoorn, L., Nemec, A. & Seifert, H. (2007). An increasing threat in hospitals:
239		multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5, 939-951.
240	4.	Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. &
240 241	4.	Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. & Sheng, W. H. (2014). Evaluation of the Bruker Biotype matrix-assisted laser desorption
240 241 242	4.	Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. & Sheng, W. H. (2014). Evaluation of the Bruker Biotype matrix-assisted laser desorption ionization – time of flight mass spectrometry system for identification of blood isolates of
240241242243	4.	Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. & Sheng, W. H. (2014). Evaluation of the Bruker Biotype matrix-assisted laser desorption ionization – time of flight mass spectrometry system for identification of blood isolates of <i>Acinetobacter</i> species. <i>J Clin Microbiol</i> 52 , 3095-3100.
240241242243244	4.	 Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. & Sheng, W. H. (2014). Evaluation of the Bruker Biotype matrix-assisted laser desorption ionization – time of flight mass spectrometry system for identification of blood isolates of <i>Acinetobacter</i> species. <i>J Clin Microbiol</i> 52, 3095-3100. Kishii, K., Kikuchi, K., Matsuda, N., Yoshida, A., Okuzumi, K., Uetera, Y., Yasuhara, H. &
 240 241 242 243 244 245 	4.	 Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. & Sheng, W. H. (2014). Evaluation of the Bruker Biotype matrix-assisted laser desorption ionization – time of flight mass spectrometry system for identification of blood isolates of <i>Acinetobacter</i> species. <i>J Clin Microbiol</i> 52, 3095-3100. Kishii, K., Kikuchi, K., Matsuda, N., Yoshida, A., Okuzumi, K., Uetera, Y., Yasuhara, H. & Moriya, K. (2014). Evaluation of matrix-assisted laser desorption ionization-time of flight
 240 241 242 243 244 245 246 	4.	 Hsueh, P. R., Kuo, L. C., Chang, T. C., Lee, T. F., Teng, S. H., Chuang, Y. C., Teng, L. J. & Sheng, W. H. (2014). Evaluation of the Bruker Biotype matrix-assisted laser desorption ionization – time of flight mass spectrometry system for identification of blood isolates of <i>Acinetobacter</i> species. <i>J Clin Microbiol</i> 52, 3095-3100. Kishii, K., Kikuchi, K., Matsuda, N., Yoshida, A., Okuzumi, K., Uetera, Y., Yasuhara, H. & Moriya, K. (2014). Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of <i>Acinetobacter</i> strains isolated from blood

248 6. Kouyama, Y., Harada, S., Ishii, Y., Saga, T., Yoshizumi, A., Tateda, K. & Yamaguchi, K.

250		predominance of multidrug-resistant Acinetobacter baumannii clonal complex 92 and IMP-type
251		metallo-β-lactamase-producing non-baumannii Acinetobacter species. J Infect Chemother 18,
252		522-528.
253	7.	Kuo, S. C., Chang, S. C., Wang, H. Y., Lai, J. F., Chen, P. C., Shiau, Y. R., Huang, I. W.,
254		Lauderdale, T. L. & TSAR Hospitals. (2012). Emergence of extensively drug-resistant
255		Acinetobacter baumannii complex over 10 years: nationwide data from the Taiwan Surveillance
256		of Antimicrobial Resistance (TSAR) program. BMC Infect Dis 12, 200.
257	8.	La Scola, B., Gundi, V. A. K. B., Khamis, A. & Raoult, D. (2006). Sequencing of the <i>rpoB</i>
258		gene and flanking spacers for molecular identification of Acinetobacter species. J Clin
259		Microbiol 44, 827-832.
260	9.	Lee, J. H., Choi, C. H., Kang, H. Y., Lee, J. Y., Kim, J., Lee, Y. C., Seol, S. Y., Cho, D. T.,
261		Kim, K. W. & other authors (2007). Differences in phenotypic and genotypic traits against
262		antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species
263		13TU. J Antimicrob Chemother 59, 633-639.
264	10.	Lee, Y., Kim, C. K., Lee, H., Jeong, S. H., Yong, D. & Lee, K. (2011). A novel insertion
265		sequence, ISAba10, inserted into ISAba1 adjacent to the bla _{OXA-23} gene and disrupting the outer
266		membrane protein gene carO in Acinetobacter baumannii. Antimicrob Agents Chemother 55,

(2012). Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in Japan:

267 361-363.

268	11.	Lu, P. L., Doumith, M., Livermore, D. M., Chen, T. P. & Woodford, N. (2009). Diversity of
269		carbapenem resistance mechanisms in Acinetobacter baumannii from a Taiwan hospital: spread
270		of plasmid-borne OXA-72 carbapenemase. J Antimicrob Chemother 63, 641-647.
271	12.	Master, R. N., Deane, J., Opiela, C. & Sahm, D. F. (2013). Recent trends in resistance to cell
272		envelope-active antibacterial agents among key bacterial pathogens. Ann N Y Acad Sci 1277,
273		1-7.
274	13.	Matsui, M., Suzuk, S., Yamane, K., Suzuki, M., Konda, T., Arakawa, Y. & Shibayama, K.
275		(2014). Distribution of carbapenem resistance determinants among epidemic and non-epidemic
276		types of Acinetobacter species in Japan. J Med Microbiol 63, 870-877.
277	14.	Park, Y. K., Jung, S. I., Park, K. H., Kim, D. H., Choi, J. Y., Kim, S. H. & Ko, K. S. (2012).
278		Changes in antimicrobial susceptibility and major clones of Acinetobacter
279		calcoaceticus-baumannii complex isolates from a single hospital in Korea over 7 years. J Med
280		<i>Microbiol</i> 61 , 71-79.
281	15.	Peleg, A. Y., Seifert, H. & Paterson, D. L. (2008). Acinetobacter baumannii: emergence of a
282		successful pathogen. Clin Microbiol Rev 21, 538-582.
283	16.	Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N. & Bonomo, R. A. (2007).
284		Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents

285 *Chemother* **51**, 3471-3484.

286	17.	Poirel, L. & Nordmann, P. (2006). Genetic structures at the origin of acquisition and
287		expression of the carbapenem-hydrolyzing oxacillinase gene bla_{OXA-58} in Acinetobacter
288		baumannii. Antimicrob Agents Chemother 50, 1442-1448.
289	18.	Shibata, N., Doi, Y., Yamane, K., Yagi, T., Kurokawa, H., Shibayama, K., Kato, H., Kai, K.
290		& Arakawa, Y. (2003). PCR typing of genetic determinants for metallo-β-lactamases and
291		integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3
292		integron. J Clin Microbiol 41, 5407-5413.
293	19.	Suzuki, M., Hosoba, E., Matsui, M. & Arakawa, Y. (2014). New PCR-based open reading
294		frame typing method for easy, rapid, and reliable identification of Acinetobacter baumannii
295		international epidemic clones without performing multilocus sequence typing. J Clin Microbiol
296		52 , 2925-2932.
297	20.	Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H.
298		& Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by
299		pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33,
300		2233-2239.
301	21.	Turton, J. F., Ward, M. E., Woodford, N., Kaufmann, M. E., Pike, R., Livermore, D. M. &
302		Pitt, T. L. (2006). The role of ISAba1 in expression of OXA carbapenemase genes in

303 Acinetobacter baumannii. FEMS Microbiol Lett 258, 72-77.

304	22.	Vila, J., Martí, S. & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug
305		resistance in Acinetobacter baumannii. J Antimicrob Chemother 59, 1210-1215.
306	23.	Xu, T., Xia, W., Rong, G., Pan, S., Huang, P. & Gu, B. (2013). A 4-year surveillance of
307		antimicrobial resistance patterns of Acinetobacter baumannii in a university-affiliated hospital
308		in China. <i>J Thorac Dis</i> 5 , 506-512.
309	24.	Yamada, Y. & Suwabe, A. (2013). Diverse carbapenem-resistance mechanisms in 16S rRNA
310		methylase-producing Acinetobacter baumannii. J Med Microbiol. 62, 618-622.
311	25.	Zarrilli, R., Pournaras, S., Giannouli, M. & Tsakris, A. (2013). Global evolution of
312		multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41, 11-19.

	MAI DI-TOF MS /		Carbapenemase gene					MIC (mg/L)				
No.	rpoB	POT code	MBL	OXA	ISAbal-bla _{OXA-51}	ISAba3-bla _{OXA-58}	carO	IPM	MEPM	SBT/ABPC	AMK	CPFX
1	A. pittii	1078-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	8/16 (I)	> 32 (R)	0.06 (S)
2	A. nosocomialis	2105-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	$\leq 2/4~(S)$	> 32 (R)	0.5 (S)
3	A. nosocomialis	2105-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	\leq 2/4 (S)	> 32 (R)	0.25 (S)
4	A. pittii	1066-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	\leq 2/4 (S)	16 (S)	0.12 (S)
5	A. pittii	1066-0-0	VIM-2	-	NT	NT	NT	> 8 (R)	> 8 (R)	4/8 (S)	16 (S)	0.12 (S)
6	A. nosocomialis	2105-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	4/8 (S)	> 32 (R)	0.12 (S)
7	A. nosocomialis	2105-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	>8/16 (R)	> 32 (R)	0.12 (S)
8	A. pittii	1078-0-0	IMP-1	OXA-58	NT	+	NT	> 8 (R)	> 8 (R)	4/8 (S)	> 32 (R)	0.25 (S)
9	A. baumannii	122-26-54	-	OXA-51	+	NT	Intact	8 (I)	> 8 (R)	$\leq 2/4~(S)$	> 32 (R)	> 2 (R)
10	A. baumannii	122-26-55	-	OXA-51	+	NT	Lost	8 (I)	> 8 (R)	>8/16 (R)	> 32 (R)	> 2 (R)
11	A. baumannii	122-26-55	-	OXA-51	-	NT	Intact	8 (I)	> 8 (R)	>8/16 (R)	> 32 (R)	> 2 (R)
12	A. baumannii	122-26-55	-	OXA-51	-	NT	Lost	8 (I)	> 8 (R)	8/16 (I)	> 32 (R)	> 2 (R)
13	A. baumannii	122-26-55	-	OXA-51	+	NT	Intact	8 (I)	> 8 (R)	>8/16 (R)	> 32 (R)	> 2 (R)
14	A. baumannii	122-26-55	-	OXA-51	+	NT	Lost	8 (I)	> 8 (R)	8/16 (I)	> 32 (R)	> 2 (R)
15	A. baumannii	122-26-53	-	OXA-51	+	NT	Intact	4 (S)	> 8 (R)	>8/16 (R)	> 32 (R)	> 2 (R)
16	A. baumannii	122-26-55	-	OXA-51	+	NT	Lost	8 (I)	> 8 (R)	>8/16 (R)	> 32 (R)	> 2 (R)
17	A. baumannii	122-26-55	-	OXA-51	+	NT	Intact	> 8 (R)	> 8 (R)	>8/16 (R)	> 32 (R)	> 2 (R)
18	A. baumannii	122-26-55	-	OXA-51	+	NT	Intact	8 (I)	> 8 (R)	8/16 (I)	> 32 (R)	> 2 (R)

Table 1. Characterizations of carbapenem-resistant Acinetobacter species

MALDI-TOF MS, matrix-assisted laser desorption ionization – time of flight mass spectrometry; POT, PCR-based open-reading-frame typing; MBL, metallo-β-lactamase; IPM, imipenem; MEPM, meropenem; SBT/ABPC, sulbactam/ampicillin; AMK, amikacin; CPFX, ciprofloxacin; OXA-51, OXA-51-like; OXA58, OXA-58-like; NT, not tested.

	1 0. 1			
No.	Date of isolation	PFGE	POT code	MLST Pasteur's
9	2010/9	А	122-26-54	ST-2
10	2011/1	B 1	122-26-55	ST-2
11	2011/2	B1	122-26-55	NT
12	2012/6	B 1	122-26-55	NT
13	2012/10	B1	122-26-55	NT
14	2012/10	B 1	122-26-55	NT
15	2012/11	B2	122-26-53	ST2
16	2013/2	B 1	122-26-55	NT
17	2013/2	B1	122-26-55	NT
18	2013/3	B1	122-26-55	NT

Table 2. Epidemiology analysis of PFGE, POT and MLST in A. baumannii

PFGE, pulsed-field gel electrophoresis; POT, PCR-based open-reading-frame typing; MLST, multi-locus sequence typing.

Figure legend

Fig 1. Pulsed-field gel electrophoresis profile of Apa I- digested genomic DNA in A. baumannii

M, molecular-weight standard

