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Abstract. NAD(P)H quinone oxidoreductase 1 (NQO1)‑depe
ndent antitumor drugs such as β‑lapachone  (β‑lap) are 
attractive candidates for cancer chemotherapy because several 
tumors exhibit higher expression of NQO1 than adjacent 
tissues. Although the association between NQO1 and β‑lap 
has been elucidated, the effects of a NQO1‑inducer and β‑lap 
used in combination remain to be clarified. It has previously 
been reported that melanoma cell lines have detectable levels 
of NQO1 expression and are sensitive to NQO1‑dependent 
drugs such as 17‑allylamino‑17‑demethoxygeldanamycin. The 
present study was conducted to investigate the involvement of 
NQO1 in β‑lap‑mediated toxicity and the utility of combina-
tion treatment with a NQO1‑inducer and β‑lap in malignant 
melanoma cell lines. Decreased expression or inhibition of 
NQO1 caused these cell lines to become less sensitive to β‑lap, 
indicating a requirement of NQO1 activity for β‑lap‑mediated 
toxicity. Of note was that carnosic acid (CA), a compound 
extracted from rosemary, was able to induce further expression 
of NQO1 through NF‑E2 related factor 2 (NRF2) stabiliza-
tion, thus significantly enhancing the cytotoxicity of β‑lap in 
all of the melanoma cell lines tested. Taken together, the data 
presented in the current study indicated that the NRF2‑NQO1 
axis may have potential value as a therapeutic target in malig-
nant melanoma to improve the rate of clinical response to 
NQO1‑dependent antitumor drugs.

Introduction

Malignant melanoma is one of the most aggressive forms of 
cancer, exhibiting resistance to various forms of chemotherapy. 

The global incidence and mortality rates of malignant 
melanoma are increasing  (1‑3). Novel targeted therapies 
designed to kill melanoma cells harboring mutations in B‑Raf 
proto‑oncogene, serine/threonine kinase (BRAF) have been 
developed using vemurafenib, which is a specific BRAF 
inhibitor (4,5). Missense mutations to the BRAF gene, most 
commonly a valine‑to‑glutamic acid substitution at codon 600, 
has been observed in ~80% of melanocytic nevi and ~50% of 
melanomas (6‑9). In addition to this BRAF mutation, another 
therapeutic target has been investigated, as melanomas, 
including acral lentiginous melanoma, the most common type 
in ethnicities that produce high levels of melanin, have a low 
frequency of BRAF gene mutation (10,11). However, details of 
the mechanism responsible for the drug insensitivity of mela-
nomas lacking BRAF mutations have been largely unclear. On 
the basis of the aforementioned background, a search for novel 
therapeutic strategies is justified.

β‑lapachone (β‑lap), a lipophilic cytotoxic o‑naphtoqui-
none derived from the bark of the South American Lapacho 
tree (Tabebuia avellanedae), has recently attracted attention 
as an antitumor drug (12,13). The mechanism of its antitumor 
effect is considered to involve the formation of reactive oxygen 
species (ROS) (13‑15). ROS and other types of radicals are 
involved in a variety of biological phenomena, including 
tumorigenesis, degenerative disease and aging (16,17), and are 
also important mediators of tumor cell death (18). NAD(P)H 
quinone oxidoreductase 1 (NQO1) catalyzes the reduction of 
β‑lap to an unstable hydroquinone, which then undergoes rapid 
oxidization and is reconverted to a stable quinone (14). This 
repeated oxidation‑reduction cycle induces ROS, partially 
contributing to the tumor killing activity of β‑lap (14,15,18).

Under physiological conditions, the intracellular level of 
ROS is tightly regulated by NF‑E2 related factor 2 (NFE2L2, 
also known as NRF2) and its inhibitor protein, Kelch‑like 
ECH‑associated protein 1 (KEAP1), which mediates NRF2 
degradation. NRF2 is a transcription factor that forms a 
heterodimer with one of the small Maf‑family proteins and 
binds to an antioxidant‑responsive element to activate tran-
scription of target genes, including NQO1 (19,20).

A previous study revealed that several melanoma cell lines 
have detectable endogenous expression of NQO1 (21). Certain 
patients with melanoma have a mutation at the KEAP1 locus, 
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which results in NRF2 stabilization (22). On the basis of these 
findings, we hypothesized that certain melanoma cells may 
be constitutionally sensitive to NQO1‑dependent antitumor 
drugs, including β‑lap, and that this sensitivity may be further 
increased through activation of the KEAP1‑NRF2 axis.

The present study investigated whether forced induction 
of NQO1, through NRF2 activation, sensitizes melanoma 
cells to β‑lap. First, whether NQO1 mediated β‑lap toxicity 
in melanoma cell lines was assessed. Next, to achieve overex-
pression of NQO1, phytochemical carnosic acid (CA), which is 
a potent activator of the KEAP1/NRF2 system, was used (23). 
The combined administration of CA augmented the antitumor 
effect of β‑lap in several melanoma cell lines. The findings of 
the present study indicate the potential availability of β‑lap 
and CA in combination as a novel chemotherapeutic approach 
for malignant melanoma.

Materials and methods

Cell cultures. Various human melanoma cell lines were 
obtained from the following sources: CRL‑1585 (also known 
as C32 cells), G‑361, HMV‑II and SK‑MEL‑28 from the Cell 
Resource Center for Biomedical Research, Tohoku University 
(Sendai, Japan); MeWo, SK‑MEL‑2 and SK‑MEL‑31 from 
the American Type Culture Collection (ATCC; Manassas, 
VA, USA); MM‑AN were provided by Dr  M. C. Mihm 
(Department of Dermatology, Harvard Medical School, 
Boston, MA, USA); GAK and HMY‑1 from the Japanese 
Collection of Research Bioresources (Osaka, Japan). The 
murine melanoma B16BL6 cell line was also obtained from 
the RIKEN BioResource Center (Tsukuba, Japan). The 
human non‑small cell lung cancer H460 cell line was also 
obtained from ATCC. The identities of cell lines used in this 
study were confirmed by a short tandem repeat analysis (data 
not shown). The cells were maintained at 37˚C under 5% CO2 
in RPMI‑1640 supplemented with 10% fetal bovine serum 
(FBS) and 1% penicillin‑streptomycin (all from Thermo 
Fisher Scientific, Inc., Waltham, MA, USA).

Small interfering RNA (siRNA) transfection. Silencer select 
siRNAs against NQO1 (cat. no. 4390824; IDs, s4089, s4090, 
and s4091), NRF2 (cat. no. 4392420; ID, s9491), and a negative 
control siRNA (cat. no. 4390844), Lipofectamine RNAiMAX 
transfection reagent and Opti‑MEM were all obtained from 
Thermo Fisher Scientific, Inc. Silencer Select siRNAs were 
pre‑designed and validated by the manufacturer. Cells at 
50% confluence were treated for 72 h in prior to the subse-
quent experiments, with 10 nM siRNA, 10 µl Lipofectamine 
RNAiMAX transfection reagent, 1 ml Opti‑MEM and 9 ml 
RPMI‑1640 supplemented with 10% FBS and 1% peni-
cillin‑streptomycin in a 10‑cm dish plate in accordance with 
the manufacturer's instructions.

Reagents and antibodies. β‑lap, carnosic acid (CA), and a 
NQO1 inhibitor, ES936, were obtained from Sigma‑Aldrich; 
Merck KGaA (Darmstadt, Germany). Stock solutions were 
prepared by dissolving the chemicals in dimethyl sulfoxide at 
20 mM (β‑lap), 100 mM (CA), and 10 mM (ES936).

The antibody directed against NRF2 (cat. no. ab‑62352) 
was obtained from Abcam (Cambridge, MA, USA). The 

antibody against NQO1 (cat. no. 3187) was obtained from 
Cell Signaling Technology, Inc. (Danvers, MA, USA). An 
antibody against β‑actin (cat. no. A2228) was obtained from 
Sigma‑Aldrich; Merck KgaA. Anti‑Rabbit IgG, HRP‑Linked 
F(ab')2 Fragment Donkey (cat. no. NA9340) and Anti‑Mouse 
IgG, HRP‑Linked Whole Ab Sheep (cat. no. NA931) were 
obtained from GE  Healthcare (Chicago, IL USA). The 
fluorescent dyes against rabbit IgG (Alexa Fluor‑488) was 
obtained from Thermo Fisher Scientific, Inc. The fluorescent 
dyes against mouse IgG (Alexa Fluor‑594) was obtained 
from Thermo Fisher Scientific, Inc. DAPI was obtained from 
Dojindo Molecular Technologies, Inc. (Kumamoto, Japan).

Cell viability assay. A Cell Counting kit‑8 (Dojindo Mole
cular Technologies, Inc.), which utilizes water‑soluble 
tetrazolium salts, was used to evaluate the proliferation of 
melanoma cells following drug treatment. All melanoma 
cell lines were seeded into 96‑well plates (5,000 cells/well) 
and cultured for 24 h prior to treatment with β‑lap and/or 
CA. Following the treatment, the medium in each well was 
replaced with 100 µl of drug‑free fresh medium and 10 µl 
of Cell Counting kit‑8 solution, incubated for an additional 
1‑2  h, and the absorbance of each well at 450   nm was 
measured using a Multiskan Spectrum spectrophotometer 
(Thermo Fisher Scientific, Inc.).

Western blotting. All melanoma cell lines at 80‑90% confl
uence, which were maintained at  37˚C under 5% CO2 in 
RPMI‑1640 supplemented with 10% FBS and 1% peni-
cillin‑streptomycin, were washed twice with ice‑chilled PBS, 
treated with 10% trichloroacetic acid for 30 min on ice and 
then scraped off into a tube. The cell pellet was washed once 
with deionized water and lysed in 9 M urea, 2% Triton X‑100, 
and 1% dithiothreitol (DTT). Protein concentration was 
measured using a BCA protein assay kit (EMD Millipore, 
Billerica, MA, USA) prior to the addition of DTT. Protein 
samples were separated using SDS‑PAGE (10% gel) and 
then transferred onto polyvinylidene difluoride transfer 
membranes (Pall Corporation, Portsmouth, UK). All proteins 
were loaded 30 µg/lane.

For all antibodies, the membranes were blocked with 5% 
non‑fat dried milk in 0.1% Tween‑20/PBS at room temperature 
for 1 h, then probed with an appropriate primary antibodies 
overnight at 4˚C, which were diluted to 1:1,000, and with 
HRP‑conjugated secondary antibodies for 1  h at room 
temperature, which were diluted to 1:5,000. Each antibody 
was diluted in 5% non‑fat dried milk in 0.1% PBS‑Tween‑20. 
Signals were detected with ECL prime detection reagents (GE 
Healthcare) and ChemiDoc XRS (Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA). Densitometric analysis of each protein 
signal was performed using ImageJ software (version 1.50; 
National Institutes of Health, Bethesda, MD, USA) (24).

Auxin‑inducible degron (AID) system. The B16BL6/pAO1 cell 
line, conditionally expressing NQO1 under the control of the 
AID system, was previously established (25). B16BL6/pAO1 
cells were treated with β‑lap and/or 0.5 mM auxin (BioROIS 
Co., Ltd., Mishima, Japan) for 24 h in 96‑well plates. Cell 
viability was measured using a CCK‑8 (Dojindo Molecular 
Technologies, Inc.) accordng to the manufacturer's instructions. 
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To detect NQO1 using immunoblotting, B16BL6/pAO1 cells 
were treated with or without 0.5 mM auxin for 24 h in 10‑cm 
dish plates. Following this treatment, western blotting was 
performed as aforementioned.

Immunofluorescence staining. Cells were washed with PBS 
and fixed with 4.0% formaldehyde and 0.5% Triton X‑100 
(Sigma‑Aldrich; Merck KGaA) for 20 min at room tempera-
ture. The slides were then blocked using 5% FBS (Thermo 
Fisher Scientific, Inc.) and 0.5% Triton X‑100 for 30 min at 
room temperature. Following three washes with PBS, the slides 
were incubated with a primary antibody (NRF2 or NQO1) in 
blocking buffer (PBS with 5% FBS and 0.5% Triton X‑100) 
at 4˚C, which were diluted to 1:500. The slides were incubated 
with secondary antibodies: Alexa Fluor‑488 (cat. no. A11008) 
and Alexa Fluor‑594 (cat. no.  A11005) (1:250; both from 
Thermo Fisher Scientific, Inc.) for 3 h at 37˚C. Cells were 
counterstained with DAPI (Dojindo Molecular Technologies, 
Inc.) for 30 min at room temperature and images were captured 
using a KEYENCE  BZ9000 f luorescence microscope 
(Keyence Corporation, Osaka, Japan). Images were captured 
at magnification, x10.

Statistical analysis. Pearson's correlation coefficient was used 
to assess the correlation between cell viability and relative 
NQO1 protein expression. In the cell viability assay, a t‑test 
with the Bonferroni correction was conducted on raw data 
for the respective doses. P<0.05 was considered to indicate a 
statistically significant difference. Fitting to a sigmoid func-
tion was performed for estimating the half‑maximal inhibitory 
concentration (IC50). One‑way analysis of variance followed 
by Tukey's honest significant difference post‑hoc test was used 
to assess the effect of CA on NQO1 expression. All analyses 
were conducted using Microsoft Excel  2013 (Microsoft 
Corporation, Redmond, WA, USA) and RStudio Desktop 
version 1.0.136 (R Studio, Boston, MA, USA).

Results

Effect of β‑lap on melanoma cell lines. A previous study 
demonstrated that melanoma cell lines exhibit detectable 
endogenous expression of NQO1, with the level of expression 
varying among the cell lines (21). In the present study, the 
protein expression levels of NQO1 and NRF2 were verified 
(Fig. 1A). As it has been shown that NQO1 is required for the 

Figure 1. Cytotoxicity of β‑lap in melanoma cell lines. (A) The expression of NRF2 and NQO1 determined by western blotting in melanoma cell lines. 
(B) Viability of SK‑MEL‑28 and GAK cells treated for 24 h with β‑lap. (C) Correlation between NQO1 expression levels and calculated IC50 values for β‑lap 
in various melanoma cell lines. NQO1 expression demonstrated by western blotting was densitometrically quantified and the values were normalized against 
β‑actin. Significance was calculated using Pearson's correlation analysis. NRF2, NF‑E2 related factor 2; NQO1, NAD(P)H quinone oxidoreductase 1; IC50, half 
maximal inhibitory concentration; β‑lap, β‑lapachone.
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bio‑activation of β‑lap (14), it was hypothesized that mela-
noma cells may be sensitive to the anti‑proliferative effect 
of β‑lap. To confirm the effect of β‑lap, cell viability was 
preliminarily measured following treatment of the melanoma 
SK‑MEL‑28 and GAK cell lines with various concentra-
tions of β‑lap. The two cell lines exhibited dose‑dependent 
decreases of cell viability (Fig.  1B). The calculated IC50 
values for β‑lap were 1.49 and 1.51  µM for SK‑MEL‑28 
and GAK cells, respectively (Table I). The viabilities of the 
remaining six cell lines were also tested and the IC50 values 
are presented in Table I. These corresponded to the values 
that had been reported previously for SK‑MEL‑28 and 
another cell line, G361 (26). The association between the 
basal expression levels of NQO1 and the IC50 values of β‑lap 
in eight melanoma cell lines were then compared. Differences 
in the basal NQO1 expression level were detected (Fig. 1C 
and Table I). However, no significant correlation between the 
basal NQO1 expression levels and IC50 values of β‑lap was 
observed (R=‑0.468, P=0.243).

NQO1‑dependent cytotoxicity of β‑lap in melanoma cell lines. 
To assess whether NQO1 is involved in β‑lap‑mediated toxicity 
in melanoma cell lines, a cell line that conditionally expresses 
NQO1 under the control of the AID system was used (25,27). 
In this system, addition of the plant hormone auxin induces the 
rapid ubiquitination of AID, followed by the proteosome‑medi-
ated degradation of ectopically expressed AID‑fused NQO1 
within 1 h (Fig. 2). As presented in Fig. 2B, β‑lap‑mediated 
toxicity in melanoma cells was decreased following auxin 
treatment in comparison with untreated controls, as assessed 
by a cell viability assay. For the experiment using siRNAs, 
CRL‑1585 cells were selected as they have relatively higher 
endogenous expression of NQO1 compared with the other 
cell lines (Fig. 1A and C). The β‑lap‑mediated toxicity was 
decreased following treatment with siRNA against NQO1 
(Fig. 2D). However, the effect was not as evident as that in the 
AID system (Fig. 2A and B), potentially because endogenous 
NQO1 expression was not completely abolished by transfection 

with the NQO1 siRNA (Fig. 2C). These results indicated that 
NQO1 expression was involved in the cytotoxicity of β‑lap in 
melanoma cell lines.

CA stabilizes NRF2 and induces further expression of NQO1. 
CA is a potent activator of the KEAP1‑NRF2 axis (23). In the 
absence of CA, NRF2 is degraded through the formation of a 
complex with its inhibitor protein, KEAP1, a member of the 
E3 ligase family (20). CA induces conformational changes by 
targeting the cysteine residues on KEAP1 proteins via thiol 
S‑alkylation and the released NRF2 is stabilized by escaping 
from its degradation complex (23,28). NRF2 is then able to 
translocate into the nucleus and operate as a transcription 
factor, forming a heterodimer with one of the small Maf‑family 
proteins, and binding to an antioxidant‑responsive element 
to activate the transcription of target genes, for instance 
NQO1  (20). Therefore, using the melanoma SK‑MEL‑28 
and GAK cell lines, whether CA treatment would stabilize 
NRF2 was assessed, leading to further induction of NQO1 
expression. The two cell lines had low basal NQO1 and 
NRF2 expression (Fig. 1A) compared with the non‑small cell 
lung cancer H460 cell line, which has been shown to harbor 
somatic mutations in the KEAP1 gene, resulting in the high 
expression of NRF2 (29). Concentrations of CA that did not 
affect cell viability were used (Fig. 3A and B). Notably, CA 
was less toxic compared with other KEAP1‑NRF2 activators, 
including sulforaphane (Fig. 3A and B). The expression of 
NRF2 was associated with that of NQO1 in the two melanoma 
cell lines (Fig. 3C and D). Furthermore, to confirm the activa-
tion of the KEAP1‑NRF2 axis by CA in melanoma cell lines, 
western blot analysis was performed to assess the amount of 
NRF2 and NQO1 in siRNA‑transfected melanoma cell lines. 
As expected, it was revealed that the significant increase in 
NQO1 induced by CA was abolished in siNRF2‑treated mela-
noma cell lines (Fig. 3C and D). Furthermore, as assessed by 
immunofluorescence staining, CA treatment resulted in further 
NRF2 stabilization and induction of NQO1 expression in the 
entire population of the two cell lines (Fig. 3E and F). These 

Table I. Effect of CA or ES936 on sensitivity of β‑lap in melanoma cell lines.

	 IC50 of β‑lap, µM
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 CA
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	  Fold increase of
Cell line	 Control	 0.5 µM	 40 µM	 ES936	 NQO1/β‑actin	 NQO1 by 40 µM CA

MM‑AN	 1.41	 1.16	 0.42	 4.77	 0.087	 1.25
CRL‑1585	 1.23	 0.95	 0.28	 5.70	 0.248	 1.26
GAK	 1.51	 1.38	 0.71	 2.70	 0.047	 1.53
G361	 0.93	 0.77	 0.14	 3.80	 0.156	 1.28
MeWo	 1.20	 0.80	 0.30	 2.70	 0.204	 1.85
SK‑MEL‑2	 2.74	 1.91	 0.73	 4.63	 0.100	 1.32
SK‑MEL‑28	 1.49	 1.38	 0.62	 9.15	 0.048	 1.63
SK‑MEL‑31	 5.02	 2.54	 2.05	 11.72	 0.052	 1.32

Melanoma cell lines incubated with 0.5 or 40 µM (MM‑AN and MeWo 20 µM) of CA or 10 µM of ES936 were simultaneously treated with 
various concentrations of β‑lap for 24 h and IC50 values were calculated in indicated cell lines. CA, carnosic acid; β‑lap, β‑lapachone; IC50, 
half‑maximal inhibitory concentration; NQO1, NAD(P)H quinone oxidoreductase 1.
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data indicate that CA may be used as an inducer of NQO1 in 
melanoma cell lines.

Combination treatment with CA increases the sensitivity 
of melanoma cells to β‑lap. Next, whether the induction of 
the expression of NQO1 was able to increase the sensitivity 
of melanoma cell lines to β‑lap‑mediated toxicity was 
investigated. As presented in Table I, sensitivity to β‑lap was 
increased by combination treatment with CA. This induction 
was CA concentration‑dependent (Table I). Treatment with 
the specific NQO1 inhibitor ES936 decreased the sensitivity 
of all the cell lines to β‑lap‑mediated toxicity (Table I). The 
concentrations of ES936 used did not affect cell viability (data 
not shown). These results indicate that combined treatment 
with CA increases the sensitivity of melanoma cells to β‑lap 
through induction of NQO1 expression.

Discussion

Malignant melanoma is one of the most aggressive types of 
skin cancer, and its incidence is increasing in Caucasian and 
non‑Caucasian populations (2,30,31). Although a number of 
therapeutic approaches for melanoma have been developed, 
including chemotherapy, immunotherapy, surgery and several 

forms of molecular‑targeted therapy, the response rate of 
patients has remained insufficient, and side effects continue 
to be an issue  (2,30). Therefore, other approaches for the 
improvement of treatment outcome requires investigation.

The present study focused on β‑lap, a natural quinone 
derived from the bark of the Lapacho tree (12,13). Previous 
studies have revealed that β‑lap acts as a potent anti‑prolifera-
tive agent, inhibiting topoisomerase I/II (26,32,33), specificity 
protein 1 (26) and the cell cycle (34). It has also been shown 
that repetitive oxidation‑reduction of β‑lap by NQO1 generates 
ROS in tumor cells (14), thus contributing to cytotoxicity in 
malignancies, including pancreatic cancer (35,36). Among the 
various aforementioned antitumor mechanisms of β‑lap, the 
present study focused on the role of NQO1 in β‑lap‑mediated 
toxicity in melanoma cell lines, as a previous study had shown 
that normal melanocytes express higher levels of NQO1 
compared with other tissues (21). As expected, loss or inhibi-
tion of NQO1 decreased the degree of β‑lap‑mediated toxicity. 
NQO1 is involved in the regulation of melanin synthesis 
via suppression of tyrosinase degradation in melanocytes 
under physiological conditions  (37). We hypothesized that 
the higher basal expression of NQO1 in melanoma cell lines 
was due to such a mechanism that is specific to pigmented 
cells. Collectively, the results of the present study indicate 

Figure 2. Association between NQO1 expression and β‑lap cytotoxicity in melanoma cell lines. Levels of NQO1 expression determined by (A) western blotting 
and (B) viability following treatment with β‑lap with or without simultaneous treatment with auxin in an AID‑NQO1‑expressing cell line. NQO1 expression 
levels in CRL‑1585 cells determined by (C) western blotting, and (D) their viability following treatment with β‑lap in comparison with cells treated with 
control siRNA or siRNA against NQO1. The results are presented as mean ± standard deviation from triplicate experiments (*P<0.05; **P<0.01). siRNA, small 
interfering RNA; siCont, control siRNA; NQO1, NAD(P)H quinone oxidoreductase 1; AID, auxin‑inducible degron; β‑lap, β‑lapachone.
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that melanomas originating from melanocytes have constitu-
tively high sensitivity to NQO1‑dependent antitumor drugs, 
including β‑lap.

CA is a natural, catechol‑type polyphenolic diterpene 
derived from rosemary (Rosmarinus officinalis), comprising 
about 5% of the dry weight of rosemary leaves (23,38). CA 
has various biological effects, mediated via phosphati-
dylinositol 3‑kinase (39), peroxisome proliferator‑activated 
receptor γ (40), cyclin A/B1 (41) and free radical‑scavenging 
activity (42). CA is also known to activate the KEAP1/NRF2 
system (23). It should be emphasized that NQO1 is known to 
be a typical target gene of NRF2. The results of the present 

study demonstrated that CA treatment led to further induction 
of NQO1 expression in melanoma cell lines, at least under the 
experimental conditions utilized in the present study. These 
findings indicate that CA may have a clinical application as 
a sensitizer for NQO1‑dependent antitumor drugs; indeed, 
combination treatment with CA increased the β‑lap sensitivity 
of all the melanoma cell lines assessed.

Throughout the present study, other than for the NQO1 
knockdown experiment, two cell lines, SK‑MEL‑28 and GAK, 
were used because they exhibited relatively higher induction 
of NQO1 by 40 µM CA in comparison with another melanoma 
cell lines. Furthermore, the induction of NQO1 by CA was 

Figure 3. Carnosic acid stabilizes NRF2 and induces further expression of NQO1. Viability of (A) SK‑MEL‑28 and (B) GAK cells treated for 24 h with CA or 
SUL. One‑way ANOVA followed by Tukey's honest significant difference test was used for statistical analysis (*P<0.05; **P<0.01). The expression of NRF2 and 
NQO1 determined by western blotting in siNRF2‑treated (C) SK‑MEL‑28 or (D) GAK cells in the presence of CA at 0.5 or 40 µM for 24 h. Densitometrically 
quantified expression levels of NQO1/β‑actin are shown below. Arrows indicate the band of NRF2. Bars in the graphs indicate the mean ± standard error of the 
mean of three independent experiments. Ιn SK‑MEL‑28 and GAK cells, the effect of CA on NQO1 expression was significant in the control series (P=0.016 
and P=0.000538 by one‑way ANOVA, respectively) and not so in siNRF2 series (P=0.571 and P=0.34, respectively). Immunofluorescent staining of NRF2 
and NQO1 in (E) SK‑MEL‑28 or (F) GAK cells treated with 40 µM of CA for 24 h. Scale bar, 100 µm. siRNA, small interfering RNA; NRF2, NF‑E2 related 
factor 2; NQO1, NAD(P)H quinone oxidoreductase 1; ANOVA, analysis of variance; CA, carnosic acid; SUL, suforaphane; cont, control.



ONCOLOGY LETTERS  15:  2393-2400,  2018 2399

more representative when the levels of NQO1 expression 
were assessed by western blotting, as these cell lines have 
basally express low levels of NQO1. Notably, NQO1 induc-
tion in MeWo cells was the highest among all cell lines tested. 
However, this cell line was not selected owing to its relatively 
high basal level of NQO1 expression.

Several studies have shown that NQO1 produces β‑lap 
radicals, leading in turn to generation of the superoxide anion 
that stabilizes β‑lap (14,15,18). The present study did not assess 
direct evidence for the involvement of radicals produced via 
NQO1 in the killing of melanoma cell lines. However, it 
was demonstrated that the tumor‑killing ability of β‑lap was 
NQO1‑dependent, as a decrease in the expression of NQO1 
or inhibition by its specific inhibitor ES936, increased the 
IC50 value of β‑lap. Furthermore, CA treatment induced the 
expression of NQO1 in melanoma cell lines. Taken together 
with previous studies, the data in the present study indicated 
that enhancement of the tumor‑killing ability of β‑lap by CA 
may be due to radicals produced via NQO1.

Thus far, CA has been shown to inhibit cell adhesion 
and migration, possibly by reducing the activity of secreted 
proteases, including the urokinase plasminogen activator and 
matrix metalloproteinases, in several tumor cell lines (43,44). 
In addition to the inhibitory effect of CA on cell prolifera-
tion, its effect on cell migration and invasion may represent 
an attractive therapeutic option for highly metastatic malig-
nant melanomas. Combined treatment with β‑lap and 
poly(ADP‑ribose) polymerase (PARP) inhibitors has been 
shown to exert a synergistic therapeutic effect in several tumor 
types by causing non‑repairable DNA damage in the presence 
of NQO1 activity (45). It is possible that CA treatment may 
be able to further augment the combined effect of β‑lap and 
PARP.

An allelic variant of NQO1 with essentially no enzymatic 
activity is reported to exist at a high frequency, particularly in 
Asian populations (46). A polymorphism of NQO1 has report-
edly been associated with response to chemotherapy (47,48). 
Therefore the existing data indicated that confirmation 
of genetic background prior to β‑lap treatment would be 
warranted for patients with malignant melanoma.

As β‑lap and CA appear to have few side effects, the 
results of the present study support the possibility that their 
use in combination to increase the expression of NQO1 
may provide a novel avenue of treatment for patients with 
malignant melanoma.
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