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Abstract

Objective

Accumulation of epicardial adipose tissue (EAT) is considered to be a cardiovascular risk

factor independent from visceral adiposity, obesity, hypertension and diabetes. We explored

the parameters related to EAT accumulation, aiming to clarify the novel pathophysiological

roles of EAT in subjects with type 2 diabetes (T2DM).

Methods

We examined the laboratory values, including cystatinC, and surrogate markers used for

evaluating atherosclerosis. EAT was measured as the sum of the adipose tissue area,

obtained by plain computed tomography scans in 208 subjects with T2DM but no history of

coronary artery disease.

Results

EAT correlated positively with age, body mass index (BMI), visceral fat area, leptin, cystatin

C and C-peptide, while correlating negatively with adiponectin, estimated glomerular filtera-

tion rate (eGFR) and the liver-to-spleen ratio. Multiple linear regression analysis revealed

serum cystatin C (β = 0.175), leptin (β = 0.536), BMI (β = 0.393) and age (β = 0.269) to be

the only parameters showing independent statistically significant associations with EAT.

When cystatin C was replaced with eGFR, eGFR showed no significant correlation with

EAT. In reverse analysis, serum cystatin C was significantly associated with EAT after

adjustment in multivariate analysis.

Discussion

EAT accumulation and elevated cystatin C have been independently regarded as risk fac-

tors influencing atherosclerosis. The strong association between EAT and cystatin C dem-

onstrated herein indicates that EAT accumulation may play an important role in Cystatin C

secretion, possibly contributing to cardiometabolic risk in T2DM patients.
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Introduction

Epicardial adipose tissue (EAT) has recently been recognized not only as fat deposited around

the pericardium, but also as a metabolically active tissue, secreting various humoral factors [1].

The volume of EAT accumulation is, in fact, associated with parameters related to obesity,

especially the visceral fat area, as well as markers of insulin resistance [2]. In this decade, the

pathophysiological roles of EAT have been attracting attention based on their relevance to

both atherosclerotic surrogate markers [3, 4] and cardiovascular disease [5, 6], independent of

obesity, hypertension and type 2 diabetes mellitus (T2DM). Moreover, a case-control study

showed increased EAT volume to be related to major adverse cardiac events in subjects who

have no prior history of coronary artery disease (CAD) [7].

EAT is a source of bioactive molecules, including adipocyokines and growth factors,

directly impacting inflammation of the myocardium and coronary arteries. Similar to visceral

fat, increasing obesity accompanied by epicardial adipocyte enlargement, leads to deterioration

of adipocytokine signaling, including enhancement of plasminogen activator inhibitor (PAI)-

1, tumor necrosis factor (TNF)-α and leptin expressions and a decrease in adiponectin expres-

sion [8]. This potential for local production of various cytokines is regarded as a major mecha-

nism underlying the effects of EAT accumulation on the development of atherosclerosis. The

profile of adipocytokine expression in EAT is reportedly comparable to that in visceral fat, as

exemplified by the reduced expression of adiponectin in adipose tissue from CAD subjects [9].

The recent advances in imaging technology enable us to quantify EAT using modalities

such as echocardiography [10], magnetic resonance imaging [11] and multi-detector com-

puted tomography (MDCT) [12]. Among these modalities, MDCT provides the most repro-

ducible determination of EAT because of its higher spatial resolution, resulting in accurate

quantification. Obtaining information on calcification of coronary arteries, an established pre-

dictor of CAD, is another merit of performing cardiac CT.

While several studies have shown the importance of EAT accumulation in the development

of atherosclerosis, the EAT associated factors influencing atherosclerosis as not as yet fully

understand. Thus, we designed this cross-sectional study to examine associations among EAT,

humoral factors and atherosclerotic surrogate markers in T2DM patients, who are known to

be at risk for CAD. In this study, we explored the parameters related to EAT accumulation,

aiming to clarify the novel pathophysiological roles of EAT in subjects with T2DM.

Materials and methods

Study subjects

The study subjects were T2DM patients admitted to Iwate Medical University Hospital during

the period from January 2014 to July 2016. Two hundred and eight subjects, all of whom

underwent cardiac MDCT, were enrolled in this study. Patients were excluded if they had

renal dysfunction (estimated glomerular filtration rate with serum creatinine [eGFRcre] below

45 mL min-1 1.73 m-2), any malignancy, an infectious disorder, collagen disease or a past his-

tory of CAD. This study was approved by the Institutional Review Board of Iwate Medical Uni-

versity (Approval number: H27-30). The concent of the study was informed and obtained by

written form.

Quantification of EAT

EAT and the coronary artery calcification score (CACS) were quantified on ECG-gated

diagnostic cardiac CT scans with some modification [13, 14]. A VCT 240 slice MDCT (Aquil-

lion ONE, Toshiba Medical, Tokyo, Japan) was used to obtain plain multi-slice CT scans,
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performed with a 0.5 mm collimation width, a gantry rotation speed of 0.4 s/rotation, 120 kV

and 300 mA, using prospective ECG-gated axial scanning.

Measurements of EAT were performed by CT scanning with cross-sectional axial views

employing imageswith 3mm gaps. The range for measurement of EAT was set as the origin of

the left main coronary trunk for the superior border and 6cm below the superior border for

the basal border [15]. Quantification of the EAT area (cm2) was performed using software pro-

grams (Slim Vision 5, Cybernet Systems, Japan). The EAT area was calculated by manually

tracing a region of interest (ROI), which was placed outside the line of the visceral pericardium

to exclude pericardial fluid. A density range between -200 and -30 Hounsfield Units was used

to isolate adipose tissue [14, 16]. The EAT area of each slice was summed from 20 slices and

multiplied by the slice number to evaluate the EAT volume (cm3). A representative image is

shown in Fig 1. The EAT values obtained from 20 slices were validated by assessing the corre-

lation with those of whole cardiac scanning image from the same person, in a portion of the

subjects enrolled in this study (n = 105, r = 0.974, p< 0.01).

CT imaging analyses

The total CACS were analyzed according to the Agatston method [15] and were determined as

previously reported [17]. The volume of abdominal fat, divided into visceral fat area and sub-

cutaneous fat area, was obtained from CT images scanned at the level of the fourth lumbar ver-

tebra [18]. Hepatic steatosis was defined as a liver to spleen density ratio below 0.9, based on

plain abdominal CT [19].

Fig 1. The representative image of CT image evaluating EAT. A region of interest (ROI) was manually

traced along the visceral pericardium as indicated green line. A density range between -200 and -30

Hounsfield Units was used to isolate adipose tissue displayed as pink area.

https://doi.org/10.1371/journal.pone.0184723.g001
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Measurements of ABI, baPWV and carotid artery IMT

The ABI (ankle brachial pressure index) and brachial ankle pulse wave velocity (baPWV) were

measured using an automatic waveform analyzer (BP-203RPE; Colin Co., Komaki, Japan).

The intima-media thickness (IMT) of the carotid arteries was measured using ultrasound diag-

nostic equipment (LOGIQ 500, GE Yokogawa Medical Systems Corp., Hino, Tokyo, Japan)

and the max IMT, i.e. the thickest portion detected in the scanned regions, was determined as

described previously [17]. These measurement values and CACS were evaluated in order to

screen for asymptomatic atherosclerosis in T2DM patients.

Laboratory data analysis

Laboratory values were measured employing routine techniques on blood and urine samples

obtained after a 12-h overnight fast in T2DM patients. The value of low dencity lipoprotein

cholesterol (LDL-C) was measured using a direct assay method (Sekisui Medical Co., Tokyo,

Japan). The serum levels of adipocytekines, including leptin and adiponectin, as well as those

of oxidative stress markers, such as urinary 8-isoprostane and 8-hydroxydeoxyguanosine, and

serum malondialdehyde-LDL cholesterol, and various unsaturated fatty acid were measured

by SRL, Inc. (Tokyo, Japan).

Estimated glomerular filtration rates (eGFR) were calculated as shown below [20]. Serum

creatinine (cre) based eGFR was defined as eGFRcre (mL/min/1.73m2) = 194 x cre-1.094 x

age-0.287 (male), 194 x cre-1.094 x age-0.287 x 0.739 (female). Serum cystatin C (cys) based eGFR

was defined as eGFRcys (mL/min/1.73m2) = (104 x cys-1.019 x 0.996 age) - 8 (male), (104 x

cys-1.019 x 0.996 age x 0.929) - 8 (female).

Statistical analysis

Quantitative data are presented as means ± standard deviation (SD) or as medians with inter

quartile range when the data showed a non-normal distribution. Comparisons between the

subjects were performed employing the student t test and the chi-square test or, when the data

showed a non-normal distribution, the Mann–Whitney U-test. The level of significance was

set at P< 0.05. Multiple linear regression analyses were performed to evaluate parameters

independently showing significant correlations with EAT and cystatin C. Clinical parameters,

showing significant simple correlations with EAT or cystatin C, were assigned as independent

variables in multivariate linear regression analysis, unless there was extreme collinearity. All

statistical analyses were carried out using SPSS version 21 (SPSS Japan Inc., Tokyo, Japan).

Results

The clinical characteristics of the 208 enrolled subjects are shown in Table 1. Mean age was 58

years, mean diabetes duration was 9.7 years and 125 subjects were males. The mean body mass

index (BMI), visceral fat area and homeostasis model assessment (HOMA) -R were 27.0, 160.2

cm2 and 3.1, respectively, indicating moderately obesity and the presence of insulin resistance

as compared to Japanese subjects with T2DM in general. The mean EAT values was 52.4 cm3.

The volume of EAT correlated positively with age (r = 0.206, p< 0.01), BMI (r = 0.488,

p< 0.01), visceral fat area (r = 0.603, p< 0.01), levels of serum dihomo-gamma-linolenic acid

levels (DGLA) (r = 0.184, p < 0.01), leptin (r = 0.496, p< 0.01), cystatin C (r = 0.320, p <

0.01) and C-peptide (r = 0.263, p< 0.01), as well as with HOMA-R (r = 0.262 p< 0.01) (Table

2). The EAT values showed negative correlations with adiponectin (r = -0.173, p< 0.05),

eGFRcre (r = -0.218, p< 0.01), eGFRcys (r = -0.362, p< 0.01) and the liver-to-spleen ratio

(r = -0.186, p< 0.01). Consistent with previous reports, EAT values correlated with the
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Table 1. Baseline characteristics of the study subjects.

n = 208

Gender (male / female) 125 / 83

Age (years) 58.0 ± 14.3

BMI (kg/m2) 27.0 ± 6

Diabetes duration (years) 9.7 ± 9.6

Hypertension, n (%) 115 (55)

Dyslipidemia, n (%) 152 (73)

SBP (mmHg) 127.8 ± 19.2

DBP (mmHg) 76.0 ± 12.8

Total cholesterol (mg/dL) 193.9 ± 49.3

Triglyceride (mg/dL) 150.8 ± 92.5

HDL cholesterol (mg/dL) 46.1 ± 13.8

LDL cholesterol (mg/dL) 119.3 ± 38.7

eGFRcre (mL/min/ 1.73 m2) 74.8 ± 15.2

eGFRcys (mL/min / 1.73 m2) 81.1 ± 22.6

24hrs creatinine clearance (mL/min) 87.3 ± 30.1

Cystatin C (mg/L) 0.96 ± 0.24

Fasting blood glucose (mg/dL) 172.7 ± 79.1

HbA1c (%) 10.4 ± 2.4

HOMA-R 3.1 ± 2.9

C-peptide (ng/mL) 1.64 ± 1.00

Urinary 8-isoprostane (pg/mgCr) 245.8 ± 124.7

Urinary 8-OHdG (pg/mgCr) 11.1 ± 5.5

MDA-LDL (U/dL) 134.5 ± 47.5

Leptin (ng/mL) 12.2 ± 9.6

Adiponectin (μg/mL) 3.2 ± 3.3

High-sensitivity C-reactive protein (mg/dL) 0.11 (0.04–0.31)

DGLA (μg/mL) 37.6 ± 18.8

AA (μg/mL) 193.8 ± 58.7

EPA (μg/mL) 73.5 ± 46.7

DHA (μg/mL) 149.8 ± 59.6

EPA/AA 0.4 ± 0.3

max IMT (mm) 1.45 (1.00–2.00)

baPWV (cm/s) 1499 (1251–1749)

ABI 1.12 (1.06–1.18)

Coronary artery calcification score, (AU) 20.0 (0–143.8)

Visceral Fat Area (cm2) 156.4 (112.8–200.0)

Subcutaneous Fat Area (cm2) 175.0 (121.2–267.1)

EAT (cm3) 52.4 ± 29.5

Liver spleen ratio 1.12 ± 0.28

Diabetic retinopathy, n (%) 58 (28)

Peripheral neuropathy, n (%) 94 (46)

History of smoking, n (%) 110 (53)

Af, n (%) 18 (9)

History of CVD, n (%) 25 (12)

Family history of CVD, n (%) 82 (39)

Diabetic nephropathy Normoalbuminuria (<30 mg/ gCre) 140 (77.4)

Microalbuminuria (30–299 mg/ gCre) 51 (24.5)

(Continued )
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parameters known to be related to metabolic syndrome in Japanese subjects. In addition, the

EAT values were higher in females and in the subjects with hypertension.

Next, we performed multiple linear regression analyses to identify variables independently

related to EAT values (Table 3). Multivariate analysis, adjusted for sex, adiponectin, the liver-

to-spleen ratio, DGLA and HOMA-R, revealed age, BMI, serum leptin level, the presence of

hypertension and the cystatin C level to be positively related to EAT values. Since the serum

cystatin C level is an established marker of renal function, to assess whether the effect of

cystatin C on EAT values reflects glomerular filtration, we performed multivariate analysis

employing Model 2, switching one of the dependent variables from cystatin C to eGFRcre.

Intriguingly, this multiple linear regression analysis revealed eGFRcre to not be independently

associated with EAT values. This result suggested the association between cystatin C and EAT

values to be independent of glomerular filtration rate evaluated by serum creatinine level.

To investigate the effects of cystatin C on clinical parameters in our study subjects, we per-

formed simple and multiple linear regression analyses for cystatin C. The serum cystatin C

level showed significant correlation with age, diabetes duration, visceral fat area, EAT, IMT,

PWV and CACS (Table 4). Furthermore, cystatin C correlated negatively with the parameters

reflecting renal function, including eGFRcre, eGFRcys and 24hrCcr, and HbA1c. The EAT val-

ues were higher in the subjects with hypertension. Interestingly, cystatin C showed associa-

tions with the parameters related to metabolic syndrome and with the surrogate markers of

atherosclerosis. Multiple linear regression analysis, adjusted for age, gender, EAT, max IMT,

CACS, baPWV, HbA1c and the presence of hypertension, revealed age, male, EAT and the

presence of hypertension to show independent statistically significant associations with cysta-

tin C (Table 5).

In addition, there were no significant differences either EAT volume or cystatin C values

between users and non-users of various medications, including drugs for diabetes, statins and

renin-angiotensin system inhibitors.

Table 1. (Continued)

n = 208

Overtalbuminuria (�300 mg/ gCre) 17 (8.1%)

DPP-4 inhibitors, n (%) 101 (49)

Insulin, n (%) 96 (46)

Metformin, n (%) 53 (25)

Sulfonylurea, n (%) 37 (18)

Alpha-glucosidase inhibitor, n (%) 30 (14)

Glinide, n (%) 6 (3)

Glucagon-like peptide-1, n (%) 9 (4)

Thiazolidinedione, n (%) 13 (6)

SGLT inhibitor, n (%) 5 (2)

Statins, n (%) 86 (41)

RAS inhibitors, n (%) 84 (40)

Calcium channel blocker, n (%) 57 (27)

Diuretics, n (%) 31 (15)

SBP: systolic blood pressure, DBP: diastolic blood pressure, HbA1c: hemoglobin A1c, DGLA: dihomo-

gamma-linolenic acid, AA: arachidonic acid, EPA: eicosapentaenoic acid, DHA: docosahexaenoic acid,

CVD: cerebral vascular disease, DPP: dipeptidyl peptidase, RAS: renin-angiotensin system, SGLT: Sodium-

dependent glucose transporter, 8-OHdG: 8-hydroxydeoxyguanosine

https://doi.org/10.1371/journal.pone.0184723.t001
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Discussion

This study is the first, to our knowledge, to demonstrate a close relationship between EAT

accumulation and the serum level of cystatin C, independent from glomerular filtration rate in

Japanese T2DM. Because the incidence of CAD in the Japanese population has been rising in

recent decades, identification of factors contributing to the development of atherosclerosis

Table 2. Correlations of clinical parameters with EAT.

Variable Correlation coefficient EAT values P value

Age, (years) 0.206 0.003

BMI (kg/m2) 0.488 < 0.001

Diabetes duration (years) 0.111 0.114

SBP (mmHg) 0.080 0.253

DBP (mmHg) -0.006 0.929

Total cholesterol (mg/dL) -0.077 0.266

Triglyceride (mg/dL) 0.045 0.516

HDL cholesterol (mg/dL) -0.123 0.076

LDL cholesterol (mg/dL) -0.048 0.487

eGFRcre (ml/min /1.73 m2) -0.218 0.002

eGFRcys (ml/min / 1.73 m2) -0.362 < 0.001

24hrs creatinine clearance (mL/min) 0.011 0.877

Cystatin C (mg/L) 0.320 < 0.001

Fasting blood glucose (mg/dL) -0.079 0.258

HbA1c (%) -0.112 0.110

HOMA-R 0.262 < 0.001

C-peptide (ng/mL) 0.264 < 0.001

Urinary 8-isoprostane (pg/mgCr) -0.029 0.681

Urinary 8-OHdG (pg/mgCr) 0.024 0.728

MAD-LDL (U/dL) 0.018 0.795

Leptin (ng/mL) 0.496 < 0.001

Adiponectin (μg/mL) -0.173 0.012

High-sensitivity C-reactive protein (mg/L) 0.137 0.062

DGLA (μg/mL) 0.184 0.008

AA (μg/mL) -0.010 0.890

EPA (μg/mL) 0.095 0.171

DHA (μg/mL) 0.039 0.580

EPA/AA 0.090 0.194

max IMT (mm) -0.013 0.856

baPWV (cm/s) 0.095 0.173

ABI 0.066 0.344

Coronary artery calcification score (AU) 0.074 0.288

Visceral Fat Area (cm2) 0.603 < 0.001

Liver-to-spleen ratio -0.186 0.009

Male vs Female* 48.5±27.2 vs58.5±32.0 0.022

Hypertension (Yes vs No)* 55.8±29.0 vs 48.3±29.9 0.048

Dyslipidemia (Yes vs No)* 51.7±28.0 vs 54.5±33.5 0.577

Spearman rank correlation coefficient

* analyzed by Mann-Whitney U-test, values are mean±SD

https://doi.org/10.1371/journal.pone.0184723.t002
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resulting from adiposity is important. Our present observations shed light on the mechanism

of atherosclerosis development in T2DM patients with fat accumulation.

EAT arises from brown adipose tissue as well as visceral adipose tissue [21] and possesses

biological characteristics to similar those of visceral fat [22]. While the volume of EAT

accounts for only one percent of whole fat mass [1], adipocytes in the epicardium are able to

synthesize, produce and secrete bioactive humoral factors which are transported into the myo-

cardium via vasocrine and/or paracrine pathways [23]. These bioactive molecules, including

inflammatory cytokines, secreted from EAT might interact directly with coronary arteries and

the myocardium. In addition, expressions and secretions of inflammatory cytokines, such as

resistin, monocyte chemotactic protein (MCP)-1 and TNF-α, are higher in EAT than in subcu-

taneous fat tissue (SAT) [24] and inflammatory cells markedly infiltrate EAT as compared to

SAT in CAD subjects [1]. Moreover, expressions of mRNA involved in oxidative stress are

higher in EAT than in SAT [25]. Taken together, our results and those of other investigators

indicate that EAT has distinctive pathogenic and pathophysiological characteristics with exac-

erbate inflammation and oxidative stress, leading to the development of atherosclerosis.

The volume of EAT reportedly showed association with surrogate markers of atherosclero-

sis, including CACS [5], carotid IMT [3], carotid stiffness [4] and the degree of coronary artery

stenosis [26]. However, in this study, there was no association between EAT volume and surro-

gate markers of atherosclerosis, including CACS, max IMT, baPWV and ABI. A meta-analysis

[27] and a multicenter study [28] also found no associations between EAT and atherosclerotic

markers, such as CACS. In contrast, CACS was found to have a strong association with CAD

and future cardiovascular events in subjects with chronic kidney disease (CKD) [29] and in a

large prospective study [30]. Kaikita et al reported EAT to correlate positively not with calcified,

but rather with non-calcified coronary plaque in subjects at high risk for CAD [31], suggesting

that EAT may reflect early stage atherosclerosis and serve as a predictive marker of CAD pro-

gression. Statins administered to 41% of enrolled subjects, were reported to possibly impact the

association between EAT and CACS, though whether statin usage promotes vascular calcifica-

tion remains controvercial [32]. In addition, taking the T2DM population as a whole, wherein

atherosclerosis development is attributable to multiple factors, we can reasonably specurate that

the association between EAT and atherosclerotic markers might be obscured.

Cystatin C, a 13-kD endogenous cysteine proteinase inhibitor, is ubiquitously expressed,

mainly in the brain, testis, lung, spleen and adipose tissue [33]. Cystatin C is freely filtered by

Table 3. Multiple regression analysis for EAT.

Model 1. Model 2.

Variables β P value β P value

Age 0.335 < 0.001 0.373 < 0.001

Leptin 0.260 0.011 0.346 0.001

BMI 0.393 < 0.001 0.363 < 0.001

Cystatin C 0.199 0.003

eGFRcre -0.079 0.238

Model 1: independent variables: Age, Leptin, Sex, Adiponectin, Liver-to-spleen ratio, HOMA-R, BMI, DGLA,

presence of hypertension and Cystatin-C

Model 2: independent variables: Age, Leptin, Sex, Adiponectin, Liver-to-spleen ratio, HOMA-R, BMI, DGLA,

presence of hypertension and eGFRcre

β; the standard coefficient

the multiple coefficient of determination (R2) = 0.408 (Model 1) and 0.413 (Model 2)

https://doi.org/10.1371/journal.pone.0184723.t003
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the glomeruli, and catabolized in the proximal tubules. As muscle mass, gender and protein

intake exert no influence on serum cystatin C, it is a more reliable marker of renal function

than eGFR which is based on creatinine [34, 35].

Epidemiological studies have shown serum cystatin C to be increased in humans with obe-

sity [36]. Naour et al showed cystatin C mRNA expression to be significantly elevated in

Table 4. Correlations of clinical parameters with cystatin C.

Variable Correlation cofficient Cystatin C value P value

Age (years) 0.450 < 0.001

BMI (kg/m2) -0.040 0.565

Diabetes duration (years) 0.290 < 0.001

SBP (mmHg) -0.059 0.394

DBP (mmHg) 0.390 0.775

Total cholesterol (mg/dL) -0.045 0.516

Triglyceride (mg/dL) 0.122 0.080

HDL cholesterol (mg/dL) -0.130 0.062

LDL cholesterol (mg/dL) -0.102 0.141

eGFRcre (ml/min/ 1.73 m2) -0.759 < 0.001

eGFRcys (ml/min/ 1.73 m2) -0.963 < 0.001

24hrs creatinine clearance (mL/min) -0.489 < 0.001

Fasting blood glucose (mg/dL) -0.166 0.017

HbA1c (%) -0.204 0.003

HOMA-R -0.026 0.712

C-peptide (ng/mL) 0.183 0.008

Urinary 8-isoprostane (pg/mgCr) -0.086 0.223

Urinary 8-OHdG (pg/mgCr) 0.063 0.367

MDA-LDL (U/dL) -0.027 0.703

Leptin (ng/mL) 0.090 0.196

Adiponectin (μg/mL) 0.074 0.290

High-sensitivity C-reactive protein (mg/L) 0.138 0.060

DGLA (μg/mL) 0.084 0.228

AA (μg/mL) -0.147 0.034

EPA (μg/mL) 0.151 0.029

DHA (μg/mL) 0.093 0.179

EPA/AA 0.214 0.002

max IMT (mm) 0.285 < 0.001

baPWV (cm/s) 0.340 < 0.001

ABI 0.065 0.351

Coronary artery calcification score (AU) 0.320 < 0.001

Visceral Fat Area (cm2) 0.199 0.006

Subcutaneous Fat Area (cm3) -0.057 0.440

EAT (cm3) 0.320 < 0.001

Liver-to-spleen ratio 0.058 0.445

Male vs Female* 0.98±0.26 vs 0.92±0.20 0.138

Hypertension (Yes vs No)* 1.01±0.27 vs 0.89±0.18 <0.001

Dyslipidemia (Yes vs No)* 0.97±0.25 vs 0.93±0.22 0.361

Spearman rank correlation coefficient

* analyzed by Mann-Whitney U-test, values are mean±SD

https://doi.org/10.1371/journal.pone.0184723.t004
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omental and subcutaneous adipose tissue and increased three-fold in obese as compared to

lean subjects [37]. Consistent with our result, a relationship between EAT and serum cystatin

C was demonstrated in subjects with acromegaly [38]. Taken together with the previous find-

ings of an association between visceral fat and EAT, cystatin C might be expressed in EAT and

is then probably secreted into the circulation. Our present study demonstrated a strong associ-

ation between EAT and serum cystatin C independent of glomerular filtration rate, supporting

this hypothesis.

On the other hand, elevated cystatin C is reportedly associated with the presence or likely

development of cardiovascular disease in subjects without chronic kidney disease [39, 40].

Moreover, the serum cystatin C level showed strong correlations with the degree of CAD [41,

42] and all-cause mortality [43]. Taken together, these results indicate that cystatin C is not

simply a marker of impaired kidney function but also a marker of cardiovascular disease.

Cystatin C is an endogenous inhibitor of cysteine protease, including cathepsin B, K and S,

which are involved in degradation of the extracellular matrix and migration of monocytes and

macrophages into the intima [44]. An imbalance between cysteine proteases and their inhibi-

tor, cystatin C, may affect vascular inflammation, potentially leading to the development of

atherosclerosis and inflammatory disorders [45]. Associations of serum cystatin C with inflam-

matory parameters, C-reactive protein and fibrinogen, were demonstrated, suggesting a role of

cystatin C in systemic inflammation [46]. Furthermore, plasma cystatin C levels correlated

with a build-up of amyloid deposits in the vascular walls in myocardial ischemic model mice

[47]. In this study, elevated serum cystatin C showed a simple correlation with surrogate mark-

ers of atherosclerosis, such as max IMT, baPWV and CACS, while these relationships disap-

peared with adjustment for age on multiple regression analysis. This result supports the

hypothesis that cystatin C exerts an effect on atherosclerosis development in T2DM.

The strengths of this study include the employment of numerous surrogate markers for

atherosclerosis and other obesity-related disease as independent variables in conducting cor-

relation analyses focusing on EAT. Among the obesity-related markers, such as adipocyto-

kines, inflammatory cytokines and polyunsaturated fatty acids, studied herein, a particularly

strong association between cystatin C and EAT was revealed. Serum cystatin C showed a sig-

nificant association with EAT even after adjustment for several confounding factors. This

study supports the hypothesis, and its clinical implications, that cystatin C elevation, related to

EAT accumulation, exerts an additional impact on atherosclerosis development. Surrogate

markers for evaluating atherosclerosis, including EAT volume, are informative but somewhat

inconvenient and expensive to obtain, due to the equipment necessary for performing the

Table 5. Multiple regression analysis for cystatin C.

Factors β P value

Age 0.243 0.005

Sex -0.188 < 0.001

EAT 0.306 < 0.001

max IMT 0.074 0.334

CACS 0.042 0.559

PWV -0.045 0.576

Hypertension 0.142 0.039

HbA1c -0.043 0.525

β; the standard coefficient

the multiple coefficient of determination (R2) = 0.259

https://doi.org/10.1371/journal.pone.0184723.t005
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measurement. In contrast, measuring serum cystatin C is non-invasive and low-cost. There-

fore, assessment of serum cystatin C may allow early detection of atherosclerosis.

The major limitation of this study is its cross-sectional design, raising the possibility that

our results show only associations. Therefore, the possible casual relationships between EAT

and cystatin C cannot be confirmed, and further prospective study is required. Second, the

extent of cardiac CT scanning for EAT evaluation is restricted, to within a range of 6cm from

the origin of the left main coronary trunk. Third, the sample size was rather small for perform-

ing multivariate analysis incorporating large number of variables. In addition, despite the vari-

ous clinical characteristics of the enrolled subjects varying rather markedly, the subjects were

analyzed as a single group.

EAT accumulation and a high cystatin C concentration have been independently regarded

as risk factors influencing atherosclerosis. This study showed a strong association between

EAT and cystatin C independent of several confounders, including renal function parameters

and several humoral factors. EAT accumulation may play an important role in Cystatin C

secretion, thereby possibly contributing to cardiometabolic risk in T2DM.
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