Elsevier Editorial System(tm) for American

Journal of Cardiology

Manuscript Draft

Manuscript Number:

Title: Prognostic Value of Electrocardiographic Left Ventricular Hypertrophy on Cardiovascular Risk in a Non-hypertensive Community-based Population

Article Type: Full Length Article

Keywords: cardiovascular disease; electrocardiography; left ventricular hypertrophy; epidemiology.

Corresponding Author: Dr. Fumitaka Tanaka, M.D.

Corresponding Author's Institution: Iwate Medical University

First Author: Kentaro Tanaka, M.D.

Order of Authors: Kentaro Tanaka, M.D.; Fumitaka Tanaka, M.D.; Toshiyuki Onoda, M.D.; Kozo Tanno, M.D. PhD.; Masaki Ohsawa, M.D.; Kazuyoshi Itai, PhD.; Kiyomi Sakata, M.D.; Shinichi Omama, M.D.; Kuniaki Ogasawara, M.D.; Yasuhiro Ishibashi, M.D.; Toru Kuribayashi, PhD; Akira Okayama, M.D. PhD.; Motoyuki Nakamura, M.D.

Abstract: The appearance of left ventricular hypertrophy on 12-lead electrocardiography (ECG-LVH) has been shown to be a predictor for the incidence of cardiovascular disease (CVD) in hypertensive individuals and the general population, but not in non-hypertensive individuals. A total of 7,603 individuals \geq 40 years of age who were free of CVD in the general population were followed for the incidence of CVD. ECG-LVH was defined according to criteria of either the Sokolow-Lyon (SL) voltage, Cornell voltage (CV), or Cornell voltage product (CP). During the average 9.7 \pm 2.2 years of follow-up, 604 individuals (7.9%) had their first CVD events. In non-hypertensive participants, the hazard ratio (HR) for the incidence of CVD after full adjustment by potential confounders significantly increased in ECG-LVH by any criteria (HR = 1.78 in the SL voltage, 1.68 in the CV, 1.72 in the CP, all p < 0.020) compared to no ECG-LVH. Furthermore, in these participants, the net reclassification improvement and integrated discrimination improvement were higher with the model including both any ECG-LVH parameters and the Framingham 10year risk score (FRS) than the model with the FRS alone (all P < 0.050). In conclusion, in the absence of hypertension, ECG-LVH predicts the increased risk of developed CVD and provides additional prognostic value in the CVD risk assessment using established risk factors, suggesting that evaluation of ECG-LVH is useful for identifying non-hypertensive individuals at an increased risk of CVD.

1	Prognostic Value of Electrocardiographic Left Ventricular Hypertrophy on
2	Cardiovascular Risk in a Non-hypertensive Community-based Population
3	
4	Kentaro Tanaka, MD ^a , Fumitaka Tanaka, MD ^{a*} , Toshiyuki Onoda, MD, PhD ^b , Kozo
5	Tanno, MD, PhD ^b , Masaki Ohsawa, MD, PhD ^b , Kiyomi Sakata, MD, PhD ^b , Shinichi
6	Omama, MD ^c , Kuniaki Ogasawara, MD ^c , Yasuhiro Ishibashi, MD ^d , Kazuyoshi Itai,
7	PhD ^e , Toru Kuribayashif, PhD ^f , Akira Okayama, MD, PhD ^g , Motoyuki Nakamura, MD ^a
8	On behalf of Iwate-Kenco Study Group
9	
10	Departments of ^a Internal Medicine, ^b Hygiene and Preventive Medicine, ^c Neurosurgery,
11	and ^d Neurology, Iwate Medical University, Morioka, Japan; ^e Department of Nutritional
12	Sciences, Morioka University, Takizawa, Japan; ^f Department of Health and Physical
13	Education, Faculty of Education, Iwate University, Morioka, Japan; and ^g the Research
14	Institute of Strategy for Prevention, Tokyo, Japan.
15	
16	Running title: Prognostic value of ECG-LVH in Non-hypertensives
17	
18	Acknowledgments
19	This research was supported in part by grants-in-aid from the scientific research fund

- of the Ministry of Education, Science, and Culture of Japan (17K09520), Tokyo,
- Japan.
- 22
- 23 *Corresponding author:
- Name: Fumitaka Tanaka, MD
- Address: 19-1 Uchimaru, Morioka, Iwate, Japan.
- 26 Phone: 81-19-651-5111.
- 27 E-mail: <u>ftanaka@iwate-med.ac.jp</u>

29 Abstract

30	The appearance of left ventricular hypertrophy on 12-lead electrocardiography
31	(ECG-LVH) has been shown to be a predictor for the incidence of cardiovascular
32	disease (CVD) in hypertensive individuals and the general population, but not in
33	non-hypertensive individuals. A total of 7,603 individuals \geq 40 years of age who were
34	free of CVD in the general population were followed for the incidence of CVD.
35	ECG-LVH was defined according to criteria of either the Sokolow-Lyon (SL) voltage,
36	Cornell voltage (CV), or Cornell voltage product (CP). During the average 9.7 \pm 2.2
37	years of follow-up, 604 individuals (7.9%) had their first CVD events. In
38	non-hypertensive participants, the hazard ratio (HR) for the incidence of CVD after full
39	adjustment by potential confounders significantly increased in ECG-LVH by any
40	criteria (HR = 1.78 in the SL voltage, 1.68 in the CV, 1.72 in the CP, all $p < 0.020$)
41	compared to no ECG-LVH. Furthermore, in these participants, the net reclassification
42	improvement and integrated discrimination improvement were higher with the model
43	including both any ECG-LVH parameters and the Framingham 10-year risk score
44	(FRS) than the model with the FRS alone (all P < 0.050). In conclusion, in the
45	absence of hypertension, ECG-LVH predicts the increased risk of developed CVD
46	and provides additional prognostic value in the CVD risk assessment using
47	established risk factors, suggesting that evaluation of ECG-LVH is useful for

48 identifying non-hypertensive individuals at an increased risk of CVD.

49

- 50 Keywords: cardiovascular disease, electrocardiography, left ventricular hypertrophy,
- 51 epidemiology

53 Introduction

54	Left ventricular hypertrophy (LVH) has been acknowledged as a cardiac end-organ
55	response to increased pressure or volume load and a key example of target organ
56	damage due to hypertension. ¹ For the diagnosis of LVH, 12-lead electrocardiography
57	(ECG) has been widely used as a simple and inexpensive tool in the clinical setting.
58	In addition, the appearance of LVH on ECG has been shown to be a predictor for the
59	incidence of cardiovascular disease (CVD) in hypertensive individuals ^{2,3} or a general
60	population including hypertensive individuals. 4,5,6
61	Hypertension is a major risk factor of CVD; however, CVD can occur in
62	individuals with no hypertension, as more than 50% of patients with coronary heart
63	disease did not have a history of hypertension in international randomized clinical
64	trials. ⁷ Therefore, the non-hypertensive population also is a target for the prevention
65	of CVD events. Even in the absence of hypertension, ECG-LVH has been reported to
66	be indicated by metabolic factors such as blood glucose and lipid, which are
67	established CVD risk factors. ⁸ This evidence has prompted the hypothesis that
68	ECG-LVH is a predictive marker for incident CVD in a non-hypertensive population;
69	however, this has not yet been clarified.
70	This study thus was conducted to examine the utility of ECG-LVH in the
71	prediction of incident CVD in non-hypertensive individuals in a Japanese

community-based sample.

74 Methods

75 Study participants

The Iwate-KENCO study cohort is a population-based prospective study conducted in 76Japanese residents of three districts (Ninohe, Kuji, and Miyako) in northern Iwate 77prefecture, in the northeast area of Honshu, Japan. Details of this cohort have been 78provided elsewhere.⁹ Participants were recruited from a government-regulated health 79checkup program conducted between April 2002 and January 2005. Of the original 80 cohort that agreed to participate in this study (n = 26,469), the ECG data recorded for 81 the Ninohe district cohort were analyzed (n = 8,685). A total of 686 participants were 82 excluded from the analysis for the following reasons: < 40 years of age (n = 360), 83 prevalent CVD (myocardial infarction or stroke; n = 282), or missing data at baseline 84(n = 47). In addition, 396 participants with Wolff-Parkinson-White pattern, paced 85 rhythm, complete left or right bundle branch block, or atrial fibrillation/flutter were 86 excluded. Ultimately, 7,603 subjects (2,549 males and 5,054 females) were included 87 in the analysis. 88

89

90 Outcomes

Patients with newly diagnosed stroke, acute myocardial infarction (AMI), sudden
cardiac and unexpected death (SCUD), or heart failure were registered through

93	December 2012. Registration was initially performed by attending physicians at each
94	hospital. To ensure the complete capture of all registrations, investigators consisting
95	of physicians or trained research nurses visited and reviewed medical charts and/or
96	discharge summaries at referral hospitals within the study area. Dates of death and
97	relocation from the study area were annually or biannually confirmed by investigators
98	who reviewed population-registration sheets at each local government office. People
99	who were known to be alive at the end of the follow-up and those who had moved
100	away from the study area were treated as censored cases.
101	The endpoint of the study was a composite cardiovascular outcome comprising
102	stroke, AMI, SCUD, and heart failure. Stroke was defined on the basis of symptoms
103	(sudden onset of a focal neurological deficit of 24-h duration) and brain imaging
104	including brain computed tomography or magnetic resonance imaging, and was
105	identified by local stroke registry data. ¹⁰ Heart failure was defined according to the
106	Framingham criteria ¹¹ and identified by investigators from medical records at all
107	general hospitals located within the study area. AMI was defined according to the
108	MONItoring of trends and determinants in CArdiovascular Disease (MONICA) criteria
109	¹² and identified from hospital registration survey data. According to the WHO criteria
110	for sudden death, SCUD was defined as sudden unexpected death either within 1
111	hour of symptom onset (event witnessed), or within 24 hour of having been observed

112	alive and symptom-free (unwitnessed). ¹³ SCUD was identified by reviewing death
113	certificates filed at referral hospitals and/or public health centers in the study area and
114	was determined by a committee consisting of cardiologists, neurologists, and
115	epidemiologists. The study was approved by our institutional ethics committee.
116	
117	Measurements
118	The body mass index (BMI) was calculated by dividing the weight (in kilograms) by
119	the square of the height (in meters). Participants completed a self-reported
120	questionnaire to document their medical history, including current medications and
121	lifestyle factors, such as smoking habit. Blood pressure (BP) was measured twice
122	using an automatic digital sphygmomanometer after at least 5 minutes of rest in a
123	sitting position, and the average of these two values was used for the analysis. Blood
124	samples were drawn from an antecubital vein and collected into vacuum tubes
125	containing a serum separator gel. Tubes were stored immediately after sampling in
126	an icebox and transported to the laboratory within 8 hour after collection. The
127	estimated glomerular filtration rate (eGFR) was calculated using CKD-EPI equations
128	modified by a Japanese coefficient. 14
129	

130 Risk factor definition

131	Hypertension was defined as either systolic BP \geq 140 mmHg, diastolic BP \geq 90 mmHg,
132	and/or the current use of antihypertensive agents. Diabetes was defined as a random
133	blood glucose level \geq 200 mg/dl, a fasting blood glucose level \geq 126 mg/dl, a
134	glycosylated hemoglobin (NGSP equivalent value) \geq 6.5%, and/or current
135	anti-diabetic therapy. Dyslipidemia was defined as total cholesterol levels \geq 240 mg/dl,
136	high-density lipoprotein cholesterol (HDL-C) levels < 40 mg/dl, and/or current lipid
137	lowering therapy. A smoking habit was defined as currently smoking. As the classical
138	risk index, the Framingham 10-year risk score (FRS) was calculated on the basis of
139	the categorical values for age, total cholesterol, HDL-C, systolic BP, treatment for
140	hypertension, smoking status, and diabetes status. ¹⁵
141	
142	ECG
143	At the baseline examination, the study participants underwent standard supine
144	12-lead ECG after a minimum 5-minute rest period. Blinded to the participants' clinical
145	data, two trained research nurses assessed the participants' ECG parameters. The
146	Sokolow-Lyon (SL) voltage (SV1 + RV5/V6) and Cornell voltage (CV; SV3 + RaVL)
147	were measured on three consecutive heartbeats. The QRS duration on three
148	consecutive heartbeats was measured from lead II (or lead I, III, or aVF when the
149	measurement of QRS duration was difficult from lead II). The Cornell voltage product

150	(CP) was calculated as the product of the CV times the QRS duration. From the
151	average of these measured values, ECG-LVH was defined according to the following
152	criteria: the SL voltage \geq 3.8 mV; the CV > 2.8 mV for men and > 2.0 mV for women;
153	the CP \ge 244 mV × ms. ^{16,17}
154	The intraclass and interclass correlation coefficients for the measured ECG
155	parameters were analyzed with the MedCalc statistics software program (Version
156	17.7.2, 2017; MedCalc Software, available from https://www.medcalc.org). The
157	intraobserver variation for the measured SL voltage and CP was 0.9947
158	(0.9920-0.9964) and 0.9693 (0.9544-0.9793) for observer A and 0.9772
159	(0.9658-0.9848) and 0.9581 (0.9377-0.9718) for observer B, respectively. The
160	interobserver (between observers A and B) variations for the measured SL voltage
161	and CP were 0.9930 (0.9896-0.9953) and 0.9717 (0.9579-0.9809), respectively.
162	
163	Statistical analyses
164	The baseline data are presented as the mean \pm standard deviation (SD) or
165	percentage. The comparison of continuous variables at baseline was performed by a
166	one-way analysis of variance with the Scheffe's post hoc test among the categories
167	classified according to the presence or absence of hypertension and ECG-LVH by
168	any criteria. The χ^2 test was used for the comparison of categorical variables.

169	The onset time of the first event was considered the primary endpoint. Age and
170	sex-adjusted survival curves were built using the Kaplan–Meier method and
171	compared using the log-rank test. The multivariate regression analysis was adjusted
172	as follows: model 1: age, sex; model 2: systolic BP, BMI, eGFR, diabetes mellitus (yes
173	or no), dyslipidemia (yes or no), smoking habit (yes or no) in addition to model 1. A
174	Cox regression analysis was used to calculate hazard ratios (HRs) and
175	corresponding 95% confidence intervals for composite CVD events in order to
176	estimate the effect on the study outcome of the categories classified according to the
177	presence or absence of ECG-LVH and hypertension. Furthermore, to estimate the
178	CVD risk attributed to the presence of ECG-LVH, the population-attributable fraction
179	(PAF) was calculated as Pe \times (HR – 1) / HR, in which Pe is the proportion of incident
180	cases in each risk category and HR is the full multiple-adjusted HR.
181	To determine the improvement in the model discrimination with the inclusion of
182	ECG-LVH parameters into the FRS, we calculated the net reclassification
183	improvement (NRI) and the integrated discrimination improvement (IDI). The NRI is
184	centered on reclassification tables constructed separately for individuals with or
185	without an outcome endpoint and quantifies the correct movement: upward for events
186	and downward for nonevents. ¹⁸ The IDI represents the mean difference in predicted
187	probabilities between models with and without the new marker. ¹⁸ All of the data were

188	analyzed with the SPSS statistical software program (version 11.0) or R software
189	program (version 3.1.3; available from https://www.r-project.org). P < 0.05 was
190	considered to be statistically significant.

192 **Results**

Table 1 shows the characteristics of the study participants categorized according to 193the presence or absence of hypertension and ECG-LVH by any criteria. In 194non-hypertensive participants with ECG-LVH, compared to those without ECG-LVH, 195the age, BP, glycosylated hemoglobin and FRS were likely to be higher, whereas the 196197BMI, eGFR, and the prevalence of current smokers were likely to be lower. The prevalence of LVH by the criteria of the SL voltage, CV, and CP in non-hypertensive 198participants was 1,180 (15.5%), 1,041 (13.7%), and 703 (9.2%), respectively, values 199that were lower than the prevalence in hypertensive participants (all p < 0.001, figure 2001). 201During the average 9.7 ± 2.2 years of follow-up, 604 individuals (7.9%) had their 202first CVD events, comprising 439 events of stroke, 94 events of AMI/SCUD, and 71 203events of heart failure. The Kaplan–Meier curves showed that the cumulative 204event-free rate of composite CVD with adjustment for the age and sex was 205significantly higher in non-hypertensive individuals with ECG-LVH than in those with 206 no ECG-LVH (p < 0.002 for all ECG-LVH criteria, Figure 2). 207Table 2 shows the relationship between the category classified according to the 208presence or absence of hypertension and ECG-LVH, and the risk of CVD events after 209210the adjustment for potential confounding factors in the Cox model. In

211	non-hypertensive participants, the HR for the incidence of CVD after full adjustment
212	significantly increased in ECG-LVH by all criteria (HR = 1.78 in the SL voltage, 1.68 in
213	the CV, 1.72 in the CP, all $p < 0.020$) compared to no ECG-LVH. The PAF to
214	developed stroke was 5.6% and 14.4% from the presence of ECG-LVH under any
215	criteria of the SL voltage, CV, or CP in non-hypertensive and in hypertensive
216	participants, respectively (Table 2).
217	Table 3 shows the reclassification improvement for the CVD risk prediction
218	model by the inclusion of ECG-LVH parameters into the FRS model. The NRI and IDI
219	were 0.215 and 0.006 for the inclusion of SL voltage, 0.150 and 0.004 for the
220	inclusion of CV, and 0.094 and 0.002 for the inclusion of CP, respectively, all of which
221	were statistically significant (Table 3).
222	

223 **Discussion**

The key finding in this study is that even in the absence of hypertension, ECG-LVH 224predicts the increased risk of incident CVD and improves the accuracy of 225reclassification in the traditional risk prediction model. This result suggests that 226applying ECG-LVH criteria in routine clinical practice can help appropriately identify 227non-hypertensive individuals at an increased risk of CVD. 228LVH is acknowledged as a measure of hypertensive organ damage and a 229predictor for incident CVD in hypertensive individuals.^{2,3} Furthermore, in the general 230population, a relationship between ECG-LVH and the risk of incident CVD has been 231reported.^{4,5,6} This might be mediated in part through hypertensive vascular 232atherosclerosis. In the health 2000 survey among the Finnish adult population, 233ECG-LVH in non-hypertensive individuals was not related to the risk of incident CVD, 234in contrast to that in hypertensive individuals.² In a Japanese normotensive cohort, 235CP-LVH was a predictor for incident stroke, but ECG-LVH by the SL voltage criteria 236was not.¹⁹ However, in the present non-hypertensive participants, ECG-LVH by any 237criteria of the SL voltage, CV, and CP were related to the increased risk of CVD. The 238reasons for this discrepancy are unclear but may involve differences in participants' 239characteristics and the measured outcomes as the endpoint, as the incidence of 240stroke was much higher than that of coronary heart disease in the present Japanese 241

242 population, in contrast to western populations.

243	The heart is a key target organ of high BP, and the myocardium responds to
244	increased afterload by developing LVH. However, left ventricular mass is also
245	determined by nonhemodynamic factors, such as genetic factors ²⁰ , insulin resistance
246	²¹ , obesity ²² , and alcohol intake ²³ , independent of BP. It was recently reported that
247	the adipokine resistin was an indicator of left ventricular mass independent of BP. ²⁴
248	Furthermore, a study targeting non-hypertensive patients by AI-Daydamony et al.
249	showed that the independent indicators of LVH were fasting blood glucose,
250	hemoglobin A ₁ c, triglyceride, HDL-C, and BMI, but not systolic BP. 8 This study
251	suggested that the relationship between metabolic factors and LVH is mediated
252	through the effect of insulin on the stimulation of myocardial cell growth, the activation
253	of the sympathetic nervous system, or the effect of several inflammatory substances
254	released from adipocytes. However, these mechanisms may not be able to explain
255	our findings sufficiently, as the relationship between ECG-LVH and the incidence of
256	CVD was independent of BMI and the status of dyslipidemia and diabetes in our
257	non-hypertensive subjects. In contrast, a Japanese prospective cohort study has
258	reported that, in a general population without hypertension, LVH as defined by the SL
259	voltage or CP was closely associated with future incidence of hypertension and
260	correlated with increased BP. ²⁵ This study suggests that transient (but frequent)

261increases in the BP and cardiac output that precede the development of hypertension cause LVH. This may be a potential mechanism underlying the relationship between 262ECG-LVH and CVD incidence in the non-hypertensive subjects in our study. 263Nearly half of the CVD cases (43.5%) in the present study occurred in 264participants who were non-hypertensive at baseline (Table 2). In these participants, 265266applying the SL voltage resulted in a 21.5% reclassification improvement for the risk prediction model by the FRS alone (Table 3). Furthermore, 5.6% of the overall CVD 267incidence was attributable to non-hypertensive subjects under any ECG-LVH criteria 268(Table 2). The 12-lead ECG, which is a simple and inexpensive test, may therefore be 269a useful tool for identifying individuals at CVD risk among large populations of 270271non-hypertensive subjects. The present study had several limitations. First, this study recorded ECG and 272identified the clinical data and prescribed drugs such as antihypertensive agents only 273at baseline. The changes in clinical data and the induction of medical treatment $\mathbf{274}$ during follow-up may have affected the outcomes. However, these information were 275not identified in the present study. Second, ECG-LVH may not necessarily reflect the 276presence or absence of true LVH, as the various ECG-LVH criteria have shown low 277sensitivity but high specificity for the diagnosis of echography-defined LVH.²⁶ 278However, this limitation would lead to underestimation in our findings regarding the 279

280	ECG-LVH-related risk, since a low sensitivity implies that those diagnosed with no
281	LVH by ECG likely had true LVH. Third, outpatients with no hospital admission were
282	not registered, even if they developed CVD events. This raises the possibility that
283	CVD events without hospital admission, such as mild cases of heart failure, were not
284	captured. Finally, in the present study conducted in a Japanese population, the
285	cumulative incidence of stroke was much higher than that of AMI/SCUD (5.8% vs.
286	1.2%), consistent with reports from previous Japanese epidemiological studies. 27 28
287	Therefore, our results may not be simply extrapolated to populations of other
288	races/ethnicities.
289	In conclusion, in the absence of hypertension, ECG-LVH predicts an increased
290	risk of incident CVD and provides an additional prognostic value to the assessment of
291	CVD risk by established risk factors, suggesting that evaluation of ECG-LVH is useful
292	for identifying non-hypertensive individuals at an increased risk of CVD.
293	
294	Conflicts of interest:
295	The authors have no conflicts of interest to declare.
296	
297	Acknowledgments
298	This research was supported in part by grants-in-aid from the scientific research fund

- of the Ministry of Education, Science, and Culture of Japan (17K09520), Tokyo,
- 300 Japan.

302 **References**

- 1. Drazner MH. The progression of hypertensive heart disease. *Circulation*.
- **2011;123:327-334**.
- 2. Lehtonen AO, Puukka P, Varis J, Porthan K, Tikkanen JT, Nieminen MS, Huikuri
- HV, Anttila I, Nikus K, Kähönen M, Jula A, Niiranen TJ. Prevalence and prognosis
- 307 of ECG abnormalities in normotensive and hypertensive individuals. *J Hypertens*.
- **2016;34:959-966**.
- 309 3. Edison ES, Yano Y, Hoshide S, Kario K. Association of electrocardiographic left
- 310 ventricular hypertrophy with incident cardiovascular disease in Japanese older
- 311 hypertensive patients. *Am J Hypertens*. 2015;28:527-534.
- 4. Leigh JA, O'Neal WT, Soliman EZ. Electrocardiographic Left Ventricular
- 313 Hypertrophy as a Predictor of Cardiovascular Disease Independent of Left
- 314 Ventricular Anatomy in Subjects Aged \geq 65 Years. *Am J Cardiol*.
- 315 **2016;117:1831-1835**.
- 5. Porthan K, Niiranen TJ, Varis J, Kantola I, Karanko H, Kähönen M, Nieminen MS,
- 317 Salomaa V, Huikuri HV, Jula AM. ECG left ventricular hypertrophy is a stronger
- risk factor for incident cardiovascular events in women than in men in the general
- 319 population. *J Hypertens*. 2015;33:1284-1290.
- 320 6. Okwuosa TM, Soliman EZ, Lopez F, Williams KA, Alonso A, Ferdinand KC. Left

- 321 ventricular hypertrophy and cardiovascular disease risk prediction and
- 322 reclassification in blacks and whites: the Atherosclerosis Risk in Communities
- 323 Study. *Am Heart J.* 2015; 169:155-161.
- 324 7. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff
- 325 AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary
- 326 heart disease. *JAMA*. 2003;290:898-904.
- 8. Al-Daydamony MM, El-Tahlawi M. What Is the Effect of Metabolic Syndrome
- 328 without Hypertension on Left Ventricular Hypertrophy? *Echocardiography*.
- 329 **2016;33:1284-1289**.
- 9. Nakamura M, Onoda T, Itai K, Ohsawa M, Satou K, Sakai T, Segawa T, Sasaki J,
- 331 Tonari Y, Hiramori K, Okayama A. Association between serum C-reactive protein
- levels and microalbuminuria: a population-based cross-sectional study in
- northern Iwate, Japan. *Intern Med* 2004;43:919-925.
- 10. Omama S, Yoshida Y, Ogawa A, Onoda T, Okayama A. Differences in circadian
- 335 variation of cerebral infarction, intracerebral haemorrhage and subarachnoid
- haemorrhage by situation at onset. *J Neurol Neurosurg Psychiatry*
- **2006;77:1345-1349**.
- 11. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of
- congestive heart failure: the Framingham Study. *N Engl J Med*

3401971;285:1441-1446.

341	12.	Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A.
342		Myocardial infarction and coronary deaths in the World Health Organization
343		MONICA Project. Registration procedures, event rates, and case-fatality rates in
344		38 populations from 21 countries in four continents. <i>Circulation</i> 1994;90:583-612.
345	13.	Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B, Ilias N, Vickers
346		C, Dogra V, Daya M, Kron J, Zheng ZJ, Mensah G, McAnulty J. Current burden of
347		sudden cardiac death: multiple source surveillance versus retrospective death
348		certificate-based review in a large U.S. community. J Am Coll Cardiol
349		2004;44:1268-1275.
350	14.	Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD
351		epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use
352		for population estimates. Am J Kidney Dis 2010;56:32-38.
353	15.	D'Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM,
354		Kannel WB. General cardiovascular risk profile for use in primary care: the
355		Framingham Heart Study. Circulation.2008;117:743-753.
356	16.	Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S,
357		Harris KE, Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlöf B; LIFE Study
358		Investigators. Regression of electrocardiographic left ventricular hypertrophy

- 359 during antihypertensive treatment and the prediction of major cardiovascular
- 360 events. *JAMA*.2004;292:2343-2349.
- 17. Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P. Improved
- 362 sex-specific criteria of left ventricular hypertrophy for clinical and computer
- interpretation of electrocardiograms: validation with autopsy findings.
- 364 *Circulation*.1987;75:565-572.
- 18. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the
- added predictive ability of a new marker: from area under the ROC curve to
- reclassification and beyond. *Stat Med*.2008;27:157-172.
- 19. Ishikawa J, Ishikawa S, Kabutoya T, Gotoh T, Kayaba K, Schwartz JE, Pickering
- 369 TG, Shimada K, Kario K; Jichi Medical School Cohort Study Investigators Group.
- 370 Cornell product left ventricular hypertrophy in electrocardiogram and the risk of
- 371 stroke in a general population. *Hypertension*.2009;53:28-34.
- 20. Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left
- ventricular mass: The Framingham Heart Study. *Hypertension*
- **1997;30:1025–1028**.
- 21. Phillips RA, Krakoff LR, Dunaif A, Finegood DT, Gorlin R, Shimabukuro S.
- 376 Relation among left ventricular mass, insulin resistance, and blood pressure in
- non-obese subjects. *J Clin Endocrinol Metab* 1998;83:4284–4288.

378	22.	Brady TM. The Role of Obesity in the Development of Left Ventricular
379		Hypertrophy Among Children and Adolescents. Curr Hypertens Rep. 2016;18:3.
380	23.	Manolio TA, Levy D, Garrison RJ, Castelli WP, Kannel WB. Relation of alcohol
381		intake to left ventricular mass: the Framingham Study. J Am Coll Cardiol.
382		1991;17:717–721.
383	24.	Norman G, Norton GR, Libhaber CD, Michel F, Majane OH, Millen AM, Sareli P,
384		Woodiwiss AJ. Independent associations between resistin and left ventricular
385		mass and myocardial dysfunction in a community sample with prevalent obesity.
386		Int J Cardiol 2015;196:81–87.
387	25.	Takase H, Sugiura T, Murai S, Yamashita S, Ohte N, Dohi Y. Use of
388		Electrocardiography to Predict Future Development of Hypertension in the
389		General Population. Medicine (Baltimore). 2016;95:e3483.
390	26.	Pewsner D, Jüni P, Egger M, Battaglia M, Sundström J, Bachmann LM. Accuracy
391		of electrocardiography in diagnosis of left ventricular hypertrophy in arterial
392		hypertension: systematic review. BMJ. 2007;335:711.
393	27.	Ikeda A, Iso H, Yamagishi K, Inoue M, Tsugane S. Blood pressure and the risk of
394		stroke, cardiovascular disease, and all-cause mortality among Japanese: the
395		JPHC Study. Am J Hypertens 2009;22:273-280.
396	28.	Ninomiya T, Kubo M, Doi Y, Yonemoto K, Tanizaki Y, Rahman M, Arima H,

- 397 Tsuryuya K, lida M, Kiyohara Y. Impact of metabolic syndrome on the
- development of cardiovascular disease in a general Japanese population: the
- 399 Hisayama study. *Stroke* 2007;38:2063-2069.
- 400

401 **Figure legends**

- 402 **Figure 1.** Prevalence of electrocardiographic left ventricular hypertrophy at baseline.
- 403 LVH = left ventricular hypertrophy.
- 404 **Figure 2.** Kaplan-Meier curves of cumulative cardiovascular events-free rate with
- adjustment for the age and sex according to the presence or absence of hypertension
- and ECG-LVH. *Asterisk* denotes p < 0.001 for comparison versus the group with no
- 407 LVH and no hypertension. LVH = left ventricular hypertrophy; CVD = cardiovascular
- 408 disease.

	N	lon-hypertensives		Hypertensives				
	No LVH	LVH	P value	No LVH	LVH	P value		
Number (%)	3,988 (81%)	939 (19%)		1,586 (59%)	1,090 (41%)			
Age (years)	60.0 ± 10.6	64.4 ± 9.5	< 0.001	65.8 ± 9.4	67.0 ± 8.9	< 0.001		
Sex (men)	35.5%	38.2%	0.113	30.4%	27.0%	0.057		
Systolic blood pressure (mmHg)	115.9 ± 12.6	121.5 ± 12.0	< 0.001	144.3 ± 16.1	148.9 ± 17.8	< 0.001		
Diastolic blood pressure (mmHg)	70.1 ± 8.3	72.1 ± 8.1	< 0.001	82.6 ± 10.0	84.3 ± 10.6	< 0.001		
Body mass index (kg/m ²)	23.4 ± 3.0	23.0 ± 3.1	< 0.001	25.1 ± 3.6	24.6 ± 3.4	0.001		
Estimated GFR (ml/min/1.73m ²)	79.0 ± 9.8	77.6 ± 10.0	0.020	74.5 ± 10.5	74.3 ± 11.0	0.608		
Hemoglobin A ₁ c (%)	5.38 ± 0.70	5.44 ± 0.80	0.009	5.51 ± 0.80	5.51 ± 0.80	0.968		
Diabetes mellitus	5.1%	6.6%	0.064	9.3%	8.8%	0.732		
Total cholesterol (mg/dl)	203.5 ± 33.0	202.8 ± 32.0	0.523	208.1 ± 32.7	209.1 ± 33.5	0.445		
High density lipoprotein cholesterol (mg/dl)	60.5 ± 15.1	61.5 ± 14.7	0.075	59.2 ± 14.9	60.5 ± 15.1	0.029		
Dyslipidemia	16.6%	15.9%	0.591	21.5%	22.2%	0.668		
Antihypertensive medication				40.0%	43.3%	0.129		
Current smoker	16.0%	12.8%	0.014	11.5%	9.9%	0.206		
Framingham risk score	9.4 ± 4.6	10.8 ± 4.0	< 0.001	15.0 ± 3.7	15.6 ± 3.5	< 0.001		

Table 1. Baseline characteristics according to the presence or absence of ECG-LVH in non-hypertensive and hypertensive participants

Data are presented as mean ± SD or percentage. LVH are defined as presence of any ECG-LVH criteria. ECG = electrocardiogrphy; LVH = left ventricular hypertrophy; GFR = glomerular filtration rate.

	No. of subjects	No. of events	No./1,000 person years	Sex and age adjusted HR and 95% Cl		P value	P for trend	Multivariable adjusted HR* and 95% Cl		P value	P for trend	PAR**
Sokolow-Lyon voltage												
No hypertension without LVH	4,349	203	4.7	1.00				1.00				
with LVH	578	60	11.0	1.73	1.30 - 2.31	0.001		1.78	1.33 - 2.39	< 0.001		4.4%
Hypertension without LVH	2,074	248	12.7	2.15	1.77 - 2.60	< 0.001		1.78	1.39 - 2.28	< 0.001		18.0%
with LVH	602	93	16.9	2.52	1.97 - 3.23	< 0.001	0.001	2.06	1.50 - 2.81	< 0.001	- 0.001	7.9%
Cornell voltage							0.001				< 0.001	
No hypertension without LVH	4,511	226	5.1	1.00				1.00				
with LVH	416	37	9.2	1.76	1.24 - 2.51	0.020		1.68	1.18 - 2.39	0.00		2.5%
Hypertension without LVH	2,051	258	13.4	2.10	1.75 - 2.52	< 0.001		1.74	1.36 - 2.21	< 0.001		18.1%
with LVH	625	83	14.3	2.47	1.89 - 3.22	< 0.001	< 0.001	1.97	1.42 - 2.72	< 0.001	< 0.001	6.8%
Cornell product							< 0.001				< 0.001	
No hypertension without LVH	4,679	240	5.2	1.00				1.00				
with LVH	248	23	9.6	1.78	1.16 - 2.74	0.002		1.72	1.12 - 2.65	0.01		1.6%
Hypertension without LVH	2,221	268	12.8	1.98	1.65 - 2.36	< 0.001		1.64	1.29 - 2.08	< 0.001		17.3%
with LVH	455	73	17.6	2.94	2.24 - 3.86	0.006	< 0.001	2.37	1.71 - 3.29	0.10	< 0.001	7.0%
Any LVH criteria No hypertension							< 0.001				< 0.001	
without LVH	3,988	179	4.5	1.00				1.00				
with LVH	939	84	9.3	1.67	1.29 - 2.17	< 0.001		1.68	1.29 - 2.19	< 0.001		5.6%
Hypertension without LVH	1,586	183	12.2	2.11	1.71 - 2.60	< 0.001		1.80	1.39 - 2.34	< 0.001		13.5%
with LVH	1,090	158	15.8	2.68	2.15 - 3.34	< 0.001	< 0.001	2.22	1.67 - 2.97	< 0.001	< 0.001	14.4%

Table 2. Hazard ratios for cardiovascular events in the category classified according to the presence or absence of ECG-LVH and hypertension

* Hazard ratio in a multivariate Cox proportional hazards model including age, sex, body mass index, systolic blood pressure, estimated glomerular filtration rate, diabetes mellitus (yes or no), dyslipidemia (yes or no), smoking status (yes or no). LVH = left ventricular hypertrophy. CI = confidence interval.

**The population-attributable fraction from exposure for each category.

Net reclassification Integrated discrimination P value P value improvement (95% CI) improvement (95% CI) Framingham 10-year risk score 0.006 (0.003 - 0.008) < 0.001 + Sokolow-Lyon voltage 0.215 (0.132 - 0.298) < 0.001 + Cornell voltage 0.150 (0.067 - 0.233) < 0.001 0.004 (0.002 - 0.006) 0.001 + Cornell voltage product 0.094 (0.011 - 0.177) 0.026 0.002 (0.000 - 0.003) 0.047

Table 3: Reclassification for the CVD risk prediction model by the inclusion of ECG-LVH parameters into the Framingham 10-year risk score model

CVD = cardiovascular disease; ECG-LVH = left ventricular hypertrophy on 12-lead electrocardiography; CI = confidence interval.

Figure 1

Non-hypertensives

